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ABSTRACT
Critical machine learning applications (medical image guidance,
task prediction, anomaly detection) require large amounts of data
that could not be sufficiently supplied from a single entity, so mul-
tiple edge devices collaboratively train their collected data. But
this raises privacy and overhead concerns. Federated learning (FL)
can be a promising solution to enable these applications while
preserving data privacy and mitigating communication overhead.
However, an FL model originating from edge deployments with
heterogeneous resources may be biased towards a set of devices.
We observe that existing bias mitigation techniques in FL focus
mainly on the bias that originates from label heterogeneity (due
to the skewed distribution of data). We argue that sample feature
heterogeneity due to different feature representations at devices is
a major contributor to bias in FL. In this paper, we present an anal-
ysis of the bias that arises from sampling feature heterogeneity,
and analyze the potential of existing performance enhancing tech-
niques (normalization) to overcome bias. Our results demonstrate
that normalization techniques do not eliminate bias and motivate
the need for dedicated bias mitigation techniques in FL.
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1 INTRODUCTION
Recent developments in Machine Learning (ML) have adopted Fed-
erated Learning (FL) to mitigate data privacy issues [13]. FL is a
form of distributed computing that sends copies of ML model to
the entities where data is generated (known as client), performing
training iterations locally, and sending the results of the computa-
tion to a central server for updating the global model. It allows the
data to remain in custody of the owner while training model locally
on heterogeneous devices and aggregating over a server. However,
we argue that the heterogeneity between data collection devices
(in terms of sensor specifications) poses the problem of inequity in
model performance between clients using a shared global model,
often known as bias.
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We believe that due to these biases, FL models and their decisions
could become unfair. Fairness in FL is defined in [7] as uniforming
in the accuracy distribution over all clients [14] and maximizing
the performance of the worst client [18]. We argue that fairness is
impacted by favoritism in the model that is a result of data charac-
teristics inheritable from heterogeneous sensors. For example, label
heterogeneity in data is one of the leading cause of bias in models.
It represents skewed distribution of data labels across clients and
arises from variations in data collection environment [7]. In this
paper, we unveil another data characteristic that induces bias in
FL models i.e. sampling feature heterogeneity, which refers to
the difference in sample feature vectors across clients with the same
labels [9]. In essence, we observe that unfair models are biased
towards clients with favorable characteristics such as large dataset
(addressing label heterogeneity) and diverse data sets (address-
ing sampling feature heterogeneity). The prior bias mitigation
techniques focus mainly on label heterogeneity [9] using different
centralized machine learning techniques such as pre-processing
[11] and in-processing [12]. Pre-processing with normalization
solves the performance degradation problem (not bias) caused by
label heterogeneity [9]. This technique enhances the performance
of the model making the assumption that all clients classify uni-
form data (single test data shared across all clients). However, this
assumption does not hold for multiple edge devices with variable
features data, and hence a subset of clients without diverse data still
experience performance loss. In-processing methods work well in
mitigating bias because they add a discrimination-aware regularizer
to the model optimization formulation [1]. However, these methods
are more demanding in terms of resources. For example, on a client
with abundant resources, in-processing can help mitigate more bias
and move toward a fair model without degrading performance but
on the other hand it may cause performance degradation [12] with
client that have limited resources. Both of these techniques pose
an accuracy-versus-fariness and accuracy -versus-resource trade-off.
Since we are considering distributed ML in context to prevalent
edge deployments and their unique characteristics are resource
heterogeneity in terms of sensor types and sampling rates as well
as limited resources in terms of limited time, compute, power, and
bandwidth.

Furthermore, these existing techniques have not explored the
effects of sampling feature heterogeneity on bias as it is quite
challenging to determine key heterogeneous data attributes for
commonly used bias mitigation methods [11, 23]. Analyzing data
heterogeneity is critical as it leads to unfair decision making in real-
world settings where institutions heavily rely on heterogeneous
devices to collect private samples such as cancer images to perform
cancer diagnosis tasks [15].

To this end, in this paper, we investigate the following research
questions: (1) How does sensor heterogeneity (sampling feature

https://doi.org/10.1145/3560905.3568305
https://doi.org/10.1145/3560905.3568305


SenSys ’22, November 6–9, 2022, Boston, MA, USA Khotso Selialia, Yasra Chandio, and Fatima M. Anwar

heterogeneity) affect the bias in FL models and their applications
in settings with resource-constraint edge-devices? Considering the
surgical image guidance application, for instance, is it possible for
the global model to maintain uniform performance across clients if
their training data has non-identical feature representations?; (2)
Can existing performance enhancement techniques (normalization)
for label heterogeneity help mitigate the bias from sampling feature
heterogeneity? In enhancing the performance of image guidance
in settings with heterogeneous data, can bias mitigation be the
bi-product of normalization methods used to enhance the global
model’s performance label heterogeneity settings?

Contributions. While answering above research questions, we
make the following contributions:
(1) We present an empirical study to analyze sampling feature het-
erogeneity in a real-world privacy-preserving application (surgical
task prediction [5]) and a state-of-the-art classification benchmark
(CIFAR10 [19]). The analysis include the impacts of feature hetero-
geneity on the bias (per-client performance) in FL.
(2) We present a detailed analysis on bias mitigation leveraging
existing performance enhancing techniques (normalization) while
examining performance-vs-resources trade-offs. Normalizationmeth-
ods are useful for bias mitigation because they modify raw data
by altering the characteristics that lead to the bias [1]. In addition,
these methods can be deployed without the dependency on any
underlying machine learning algorithm.

2 BACKGROUND
FL uses remote execution in which copies of machine learning algo-
rithms are sent to locationswhere data are generated (clients/partitions),
training iterations are performed locally, and the results of the com-
putation are sent to a central server (aggregator) in order to update
a single global model. The FedAvg algorithm [17] is commonly used
to update the global model. This algorithm uses model averages of
different clients participating in the learning process [17].

2.1 Bias in Federated Learning
Bias is an inequity in classification performance between clients us-
ing a shared global model. Data records collected by a distinct client
contain characteristics inherent to each client as a result of hetero-
geneous sensors used to collect data. This heterogeneity could be:
sample feature heterogeneity where the same label has different
feature vectors between partitions [9]; or label heterogeneity that
results from sensor heterogeneity in terms of sampling rates[7].

Discrimination Index (Φ𝛼 ) quantifies the bias of the global
ML model toward a particular partition(s) [24] (denoted by Φ𝛼 ).
Formally, we calculate the discrimination index across partitions 𝑖
and 𝑗 as:

Φ𝛼 = 𝐿𝑖 (𝑤) − 𝐿𝑗 (𝑤) (1)

where 𝐿𝑖 (𝑤) denotes the model test loss in the classification of test
samples related to partition 𝑖 using the global model (𝑤). Similarly,
𝐿𝑗 (𝑤) denotes the loss in classifying all samples related to partition
𝑗 using the global model (𝑤). Ideally, the ideal discrimination index
should be zero (i.e., achieving the same accuracy to classify samples
in partitions 𝑖 and 𝑗 ) [24].

2.2 Normalization in Federated Learning
Data normalization techniques are used to improve the overall per-
formance of the global model in FL settings with label heterogeneity.
The commonly used normalization techniques are discussed below.

Batch normalization (BatchNorm) [10] improves the perfor-
mance of the model by normalizing the input distribution to zero
mean and unit variance. This technique estimates the global mean
and variance by using data mini-batches since these values are not
directly attainable.

Group normalization (GroupNorm) [22] is an alternative to
BatchNorm that computes mean and variance by dividing chan-
nels of image samples into groups. The computation of per-group
mean and variance makes it channel. Other variants of variants
of GroupNorm include Layer normalization(LayerNorm) [3] and
Instance normalization (InstanceNorm) [9]. LayerNorm computes
the mean and variance across all channels for each sample. This is
GroupNorm with group size for all channels. InstanceNorm, on the
other hand, is GroupNorm with group size of one.

3 METHODOLOGY
In Federated learning, the use of low quality sensors for a subset of
clients and high quality HMD sensors for another subset of clients
in medical image capture tends to cause the problem of heteroge-
neous sample features across clients. This deficiency is due to noise
introduced to the data samples due to the use of low-quality sensors
[16]. In addition, utilizing devices with heterogeneous sampling
rates to collect data across distinct clients has a high probability
of introducing label heterogeneity across partitions. Within a fixed
time frame, clients with heterogeneous sampling rates collect dif-
ferent numbers of data points of the same label. This difference in
sample features across clients (plus label heterogeneity) causes ag-
gregation bias; the aggregator’s fusion algorithm to combine client
model updates weighs client contributions differently due to the
importance of different feature representations [17], leading to a
model biased toward supposedly important feature representations.

Therefore, the main goal is to ensure that the global model is
unbiased across all partitions. This goal is significant because it
will eliminate tangible consequences of biased models in critical
applications.

3.1 Procedure
The first step is to partition the dataset into 𝐾 partitions, each
partition containing its local data for training. We vary the total
number of samples across clients to simulate label heterogeneity.
In addition, we simulate sampling feature heterogeneity by varying
sample features across partitions by adding noise of variable levels
to samples across partitions. The second step consists of deploying
an FL platform to train and obtain a single global model. We use the
FLOWER framework [4] as the FL platform. Finally, we analyze the
impact of bias as a result of using the global model trained using
data collected with heterogeneous devices across partitions.

3.2 Models, Usecase & Datasets
We evaluate image classification applications. In addition, we assess
different deep learning model structures and training datasets:
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Image classification with ResNet: We used images from the
CIFAR10 dataset [19]. The CIFAR10 dataset consists of ten classes
with 6000 images per class. These classes are airplane, automo-
bile, bird, cat, deer, dog, frog, horse, ship, and truck. The standard
train/test split is class-balanced and contains 50000 training images
and 10000 test images. We use BatchNorm as the default normal-
ization method and train the model until the error does not change
with evenly distributed labels and uniform feature distribution.

Surgical Task Prediction with EfficientNet [5]: We use im-
ages from the Cholec80 dataset [20]. Cholec80 contains 80 videos
of cholecystectomy surgeries performed by 13 surgeons, complete
with phase annotations of the 7 surgical phases for a procedure (25
FPS) defined by a senior surgeon. For all tests using the Cholec80
dataset, 32 videos were used for a train split, 40 videos for a test
split, and the remaining 8 videos for a validation split, as in prior
work [5]. We use BatchNorm as the default normalization method
and train the model until the error does not change with evenly
distributed labels and uniform feature distribution.

3.3 Platform
We use the FLOWER framework as the FL platform choice because
it is a novel FL framework that supports experimentation with both
algorithmic and systems-related challenges in FL [4]. FLOWER
enables the training of global models progressively by making
clients responsible for generating individual weight-updates for the
model based on their local datasets. These updates are then sent to
the server, which will aggregate them to produce a better model.
The most common aggregation strategy that FLOWER implements
is FedAvg (discussed in the previous sections). Finally, the server
sends this improved version of the model to each client. A complete
cycle of weight updates is called a round.

3.4 Experimental Setup
We performed all experiments using two clients and one server.
The first client and server are simulated using desktop devices with
Quadro P2200 GPUs on a 12-core AMD Ryzen threadripper pro
3945wx 12-cores × 24 processors. On the other hand, the second
client is simulated using a desktop device with GeForce RTX 2080
GPU on Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz processor.

3.5 Data Partitioning
We performe the analysis in different data splits by varying the
ratios of labels to each client and the addition of noise to the data
samples in a subset of clients. This data partitioning is important
because it simulates label and sampling feature heterogeneity that
are common in real-wild Federated learning applications.

Sampling rate Partitioning: We create non-identical data par-
titions (in terms of size) by partitioning according to the Dirichlet
distribution 𝐷𝑖𝑟 (𝛼) [21] where 𝛼 > 0 is a concentration parameter
controlling the label distribution identicalness among clients. With
𝛼 → ∞, all clients have identical label distributions; with 𝛼 → 0,
all clients have non-identical label distributions. We vary the values
of 𝛼 in range [0, 0.2, 0.5, 1, 3,∞] to generate partitions that cover a
range of identicalness.

Feature Distribution Partitioning: We synthesize sampling
feature heterogeneity by adding noise to data samples held by a

Figure 1: Impact of sensors’ sampling heterogeneity rate on
the bias (discrimination index). Discrimination index is com-
puted on different levels of label heterogeneity. Batch nor-
malization method is used in each application.

(a) CIFAR10 dataset (b) Cholec80 dataset
Figure 2: Impact of label heterogeneity on per-client perfor-
mance across partitions with default batch normalization
technique on our representative benchmarks (a) CIFAR10
dataset. (b) Cholec80 dataset.

(a) CIFAR10 dataset (b) Cholec80 dataset
Figure 3: Impact of label heterogeneity on per-client perfor-
mance across partitions with group normalization technique
on our representative benchmarks (a) CIFAR10 dataset. (b)
Cholec80 dataset.

subset of partitions. We add this Gaussian noise to both the training
and test sets to simulate data samples that adopt features inherent
to the devices on each partition.

4 RESULTS
In this section, we discuss how sensor heterogeneity affects the
bias of a global model.

4.1 Impact of Label Heterogeneity on Per-user
Performance

First, we quantify the impact of label heterogeneity with respect
to loss on overall model performance and per-client performance. In
this section, we are evaluating effects of bias in model performance
when deployed across different partitions. All partitions consist
of samples with the same features with a varied label distribution
across partitions. To carry out this experiment, we vary the number
of samples across each partition by changing the sampling rate
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(a) CIFAR10 dataset (b) Cholec80 dataset
Figure 4: Impact of label heterogeneity on per-client perfor-
mance across partitions with instance normalization tech-
nique on our representative benchmarks (a) CIFAR10 dataset.
(b) Cholec80 dataset.

partitioning across partitions. We set the differences in data samples
across clients according to the ratios 60 : 40, 70 : 30, 80 : 20
and 90 : 10 between the first and second clients, respectively. For
example, the proportion of 60 : 40 means that the first client holds
60 percent of the total data for the FL (sum of data points from all
partitions), while the second client only contributes 40 percent of
the total data. We vary the ratios to assess how small and large gaps
between different data sizes affect the difference in performance
between unique partitions. Our base case is where two clients hold
the same samples, ideally these two clients should perform the same
with zero discrimination index value.

In Figure 1 we see that the discrimination index (bias) increases
with the increase in the partitions of the dispropotion client. We
can observe that label heterogeneity causes the global model to
perform biased when classifying heterogeneous data with batch
normalization. However, the increase in the discrimination index
is not linear to the disproportion of data samples, which indicates
label heterogeneity. This discrimination index (bias) ranges from
0 to 0.47 for the application that uses the CIFAR10 datasets. The
bias of 0 corresponds to the base case, while 0.47 corresponds to
the setting with extreme label heterogeneity with a partition ra-
tio of 90 : 10. Similarly, the performance difference ranges from
0 to 0.36 for the application that uses Cholec80 datasets. This la-
bel heterogeneity causes the global model to be biased because
some clients have under-representation of data and some have
over-representation. With over-representation, sensors are likely
to collect many data samples representing the diverse class/label
distribution within a fixed time frame. This over-representation
may be good because it enables the global model to learn features
corresponding to diverse classes/labels. For under-representation,
sensors may not have enough data samples to represent the di-
verse class/label distribution. This deficiency causes the model to
experience low performance when deployed on under-represented
partitions due to a lack of generalization. The class distribution
for our two clients is shown in Table 1 for the CIFAR10 dataset
and Table 2 for the Cholec80 dataset. We observe that some la-
bels are underrepresented in client A but over-represented in in
client B. Taking into account the partitioning ratio 70 : 30, for
example, client A possesses 83 percent of data points that belong
to the "bird" label, while client B only has 17 percent of samples
representing this class. This under-representation may have caused
client B to underperform leading to overall performance degrada-
tion of the model aiding to bias (increased discrimination index).

However, from the overall performance of the model it is hard to
determine how much this performance degradation is a result of
label heterogeneity. To test the impact of overrepresentation and
underrepresentation of the client on overall degraded performance,
we use normalization as a way to solve this performance degra-
dation and see the behaviour of each client with a varied number
of samples. In Figure 2 we can see that the impact of label hetero-
geneity on per-client performance in classifying the CIFAR10 and
Cholec80 datasets, while we use the default batch normalization
technique. It is evident that performance degradation across clients
is proportional to the number of diverse labels assigned during
partitioning (Table 1 and Table 2).

To solve the problem of performance degradation that is caused
by label heterogeneity, various deep learning normalization tech-
niques such as Group Normalization have been used in [9]. This
mini-batch independent techniques improve the performance degra-
dation in settings with heterogeneous label distribution because it
eliminates the shortcomings of batch normalization, which suffers
in conditions with heterogeneous label distribution. We assess the
impact of using these mini-batch independent techniques in improv-
ing the per-client performance of the global model across different
partitions. This can help us measure how label heterogeneity
affects bias in the overall global model while using performance
enhancing normalization techniques that improve performance
under label heterogeneity [9]. We replace batch normalization with
mini-batch independent normalization methods including group
normalization (GroupNorm), instance normalization (InstanceNorm),
and layer normalization (LayerNorm).

Figures 3 and Figure 4 show the impact on the per-client per-
formance across each partition in classifying the CIFAR10 and
Cholec80 datasets. Despite using state-of-the-art normalization
techniques that improve performance, we observe that the global
model still performs differently across different clients because
of the label heterogeneity. For GroupNorm, this difference in
per-user performance (in terms of loss) ranges from 0 to 0.18 for
the application using CIFAR10 datasets. On the other hand, the
performance difference ranges from 0 to 0.22 for the application
with the Cholec80 datasets. For InstanceNorm, the difference in
per-user performance ranges from 0 to 0.29 for the application with
the CIFAR10 datasets and the difference in performance ranges
from 0 to 0.24 for the application with Cholec80 datasets. In gen-
eral, the difference in performance is directly proportional to the
level of label heterogeneity across partitions (label distributions
corresponding to each data-split ratio are in tables 1 and 2).

The bias problem discussed above arises because, in FL settings
with label heterogeneity and data under-representation hinders
the global model from learning diverse local normalization sta-
tistics (`𝑖 and 𝜎𝑖 ) across the partitions. The hindrance leads to
global models being biased towards over-represented clients be-
cause sufficient knowledge about their normalization statistics gets
distilled into the global model. From these results, we conclude that
batch-independent normalization methods do not lead to uniform
per-client performance across partitions with different numbers of
samples leading to label heterogeneity.
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Client A Client B

Label 50:50 60:40 70:30 80:20 90:10 50:50 60:40 70:30 80:20 90:10

airplane 0.5 0.86 0.99 0.8 0.99 0.5 0.14 0.01 0.2 0.01
automobile 0.5 0.4 0.07 0.8 0.99 0.5 0.6 0.93 0.2 0.01

bird 0.5 0.49 0.83 0.8 0.99 0.5 0.51 0.17 0.2 0.01
cat 0.5 0.97 0.99 0.8 0.01 0.5 0.03 0.01 0.2 0.99
deer 0.5 0.57 0.35 0.8 0.92 0.5 0.43 0.65 0.2 0.08
dog 0.5 0.99 0.75 0.8 0.96 0.5 0.01 0.25 0.2 0.04
frog 0.5 0.11 0.99 0.8 0.95 0.5 0.89 0.01 0.2 0.05
horse 0.5 0.5 0.88 0.8 0.99 0.5 0.5 0.12 0.2 0.01
sheep 0.5 0.67 0.98 0.8 0.99 0.5 0.33 0.02 0.2 0.01
truck 0.5 0.37 0.18 0.8 0.93 0.5 0.63 0.88 0.2 0.07

Table 1: CIFAR10 dataset: The share of image in each parti-
tion based on labels. Dirichlet distribution is used to partition
the data.

Client A Client B

Label 50:50 60:40 70:30 80:20 90:10 50:50 60:40 70:30 80:20 90:10

CalotTriangleDissection 0.5 0.76 0.78 0.83 0.99 0.5 0.24 0.22 0.17 0.01
CleaningCoagulation 0.5 0.68 0.05 0.24 0.38 0.5 0.32 0.95 0.76 0.62

ClippingCutting 0.5 0.01 0.69 0.99 0.47 0.5 0.99 0.31 0.01 0.53
GallbladderDissection 0.5 0.45 0.84 0.98 0.98 0.5 0.55 0.16 0.02 0.02
GallbladderPackaging 0.5 0.56 0.99 0.3 0.89 0.5 0.44 0.01 0.7 0.11
GallbladderRetraction 0.5 0.54 0.15 0.7 0.9 0.5 0.46 0.85 0.3 0.1

Preparation 0.5 0.75 0.93 0.9 0.99 0.5 0.25 0.07 0.1 0.01

Table 2: Cholec80 dataset: The share of image in each parti-
tion based on labels. Dirichlet distribution is used to partition
the data.

(a) CIFAR dataset (b) Cholec80 dataset
Figure 5: Impacts of distortion level (Gaussian noise) on the
bias of themodel in (a) CIFAR10 dataset. (b) Cholec80 dataset.

(a) CIFAR10 dataset (b) Cholec80 dataset
Figure 6: Impact of training time on the overall performance
of the model in (a) CIFAR10 dataset. (b) Cholec80 dataset.

4.2 Impact of Sampling Feature Heterogeneity
on Bias

In addition to label heterogeneity, another factor that contributes
to the bias in the global model is the existence of sampling fea-
ture heterogeneity in data samples across partitions as a result of
distortions. In addition, different levels of distortion appear in the
data as a result of the use of sensors under various conditions. For
example, cameras capture images under poor and adequate lighting
conditions. These conditions add Gaussian noise with zero-mean
and severity level controlled by variance [16]. To simulate the effect
of sampling feature heterogeneity we add gaussian noise with

figures/time_bias_cifar.pdf

(a) CIFAR10 (b) Cholec80 dataset
Figure 7: Impact of training time on the bias of the model in
(a) CIFAR10 dataset. (b) Cholec80 dataset.

different variance values to alter the levels of sampling feature het-
erogeneity. In Figure 5 it is shown that the bias is proportional to the
level of sampling feature heterogeneity for all the normalization
techniques explored in this work. Bias deficiency increases because
learning occurs differently across partitions due to different data
representations. As a result, the aggregator’s fusion algorithms to
combine local model updates can weigh contributions differently
if feature representations are non-uniform [17]. This difference in
weight contributions favors partitions with over-represented data.
In summary, we observe that sampling feature heterogeneity
causes the bias of the global model when deployed across differ-
ent clients even with different normalization methods that happen
to enhance performance. The bias arises from variable local opti-
mization profiles which in turn vary with the number of iterations
(time) since each local model’s performance improves or degrades
over time. This raises the question of how training time affects the
overall bias in disproportional clients. In the next set of evaluations,
we attempt to answer this question.

4.3 Training Time Impact on Bias
This section explores the training time and bias trade-offs in FL
that quantify how limited FL training time (common in resource-
constraint edge devices) affects the bias discussed in the previous
sections. To study this trade-off, we measure the bias and train-
ing time elapsed after each training round. In Figure 7 the impact
of training time on the bias is shown with various normalization
techniques. It should be noted that for the Cholec80 dataset, layer
normalization was omitted since the model could not learn under
heterogeneous settings due to instability in normalization statistics
because it assumes all channels have equal contributions in model
training [9]). For the CIFAR10 and Cholec80 datasets, models that
deploy InstanceNorm and GroupNorm experience an increase in
bias as training time increases (green and blue curves). This in-
crease occurs because distinct partitions use non-identical (label
and sampling feature heterogeneity). This difference in datasets
gives local models room to specialize in their local data, leading to
a more biased global model as training time increases. Although
models that use InstanceNorm and GroupNorm experience low bias
given a limited training time, this comes at the cost of performance
degradation (compared to BatchNorm) as shown in Figure 6. This
performance degradation occurs because InstanceNorm and Group-
Norm calculate the mean and variance for every group of channels,
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whereas BatchNorm calculates the mean and variance once for the
whole batch [22] and the optimization of the model slows.

The performance of different normalization techniques over
time is shown in Figure 6 (base cases with homogeneous labels and
features). learning instability due to non-identical data across par-
titions. For BatchNorm, there is a divergence in mini-batch mean
and variance across different clients [9] that leads to a biased global
model as training time progresses. This mismatch mainly depends
on the similarity/difference of mini-batches across clients (not nec-
essarily on time). For LayerNorm, it assumes that all inputs make
similar contributions to the final prediction, but this assumption
does not hold for some models, such as convolutional neural net-
works, where the activation of neurons should not be normalized
with non-activated neurons [3]. As a result, LayerNorm experiences
performance fluctuations in settings with non-identical data across
partitions, leading to unstable bias as training time increases.

Our results on the impact of training time on bias suggest that
model training time also affects the introduction of bias due to
heterogeneous sensors. The inability of resource-constraint edge
devices to train large models for long periods can reduce the bias
in global models and move them towards fair models but can cause
performance loss in short training periods. Furthermore, high-
performance applications, such as surgical guidance systems, can
be adversely affected by this performance degradation.

5 DISCUSSION
As a result of our work thus far, we discuss future directions for
bias mitigation in FL settings with heterogeneous sensors to collect
data across partitions.

Multi-modal deep learning Deep learning models that com-
bine information frommultiple modes are trained with multi-modal
deep learning. This technique has the benefit of improving perfor-
mance of the underlying application during inference as a result of
the robustness gained from learning diverse data representations
frommultiple modes [22]. Future directions in FL for medical image
guidance could involve the development of unbiased global models
through multi-modal deep learning. This multi-modal deep learn-
ing technique will mainly focus on extracting relevant cross-modal
features from medical images and eliminate irrelevant features by
employing information bottleneck [25]. Despite its potential in
mitigating bias, this approach might face some challenges when de-
ployed in FL. It will be difficult to determine and combine relevant
features from different modes without revealing private informa-
tion about each client.

Data augmentation improves training classifiers’ resistance to
distortions by enhancing the training dataset though operations
such as image flipping and image rotation [18]. Future directions
in FL for medical image guidance could be to develop an unbiased
global models through training local models that can learn image
representations that are robust to the heterogeneity introduced by
sensors. Due to the success of deep learning models in combating
noise (feature heterogeneity) in FL settings with heterogeneous
[18] sensors, this approach may mitigate bias in FL settings with
heterogeneous sensors. On the other hand, the challenge with this
approach in FL will be the generation of data augmentation samples
across partitions without revealing private data about each partition.

This will pose a challenge because the generation of augmentation
samples at each partition is dependent on the knowledge of the
local dataset discrepancies (such as sample count for each class) in
comparison with other partitions. This methods violates privacy as
private information pertaining to each client needs to be revealed.

6 RELATEDWORK
Several works have studied the fundamentals of bias in FL. In a
few recent studies, pre-processing [6, 8, 11, 23] has the used as bias
mitigation technique. In [1] few of these techniqeus has been sur-
veyed. In this, each client applies the concept of data re-weighing
[11] where the local dataset is normalized using weights computed
(based on sensitive attributes of the local training dataset) during
pre-processing. Each client then uses the normalized dataset for
local training to mitigate the bias. Reweighing methods are applied
to datasets with easily identifiable sensitive attributes. While pre-
processing methods mitigate heterogeneity-related bias, they still
have limitations. For example, in case of medical imaging data col-
lected through heterogeneous sensors, the identification of sensitive
attributes is problematic.

Others studied data normalization as a possible technique to im-
prove overall FL performance including heterogeneity bias. Author
in [9] addresses the problem of heterogeneity in FL using normal-
ization. This work employs Group normalization as an alternative
to Batch normalization to avoid the problem of unstable normaliza-
tion statistics (mean and variance). However, it mainly addresses
the problem of performance degradation in FL with heterogeneous
settings (it does not solve the problem of bias). Another work re-
lated to data normalization is studied in [2] and [15]. In this work,
data normalization statistics (with BatchNorm) are not shared with
the server for aggregation. This paradigm enhances performance
of local models in heterogeneous settings as the local statistics
ensure that the intermediate activations are centered to a similar
value across clients [2]. However, the problem with this approach
is that it leads to model personalization across clients. It becomes
difficult for these models to perform well outside of their domain.
All the above discussed techniques show weakness in solving bias
directly or indirecly. In our work we study bias caused as a result
of heterogeneity and how existing techniques impact the tradeoff
between accuracy-vs-fairness.

7 CONCLUSION
In this paper, we conducted an empirical study to investigate the
effects of sensor heterogeneity in federated learning (FL) bias. We
find that textbflabel heterogeneity and sampling feature hetero-
geneity cause bias in FL models. A large part of these biases is
attributed to the sampling feature heterogeneity, due to the inher-
ent factors of the heterogeneous device that impact the overall data
collection. To perform our analysis, we used existing performance
enhancing techniques (normalization) to quantify the bias and eval-
uate performance-vs-resource trade-offs. Our results demonstrated
that while these normalization techniques failed to mitigate the bias
completely, the bias is proportional to the degree of heterogeneity
in the sensor sampling features. With this observation, we make a
case for the need of robust mitigation techniques based on complex
multi-modal deep learning and data augmentation techniques.
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