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ABSTRACT
There is a lack of datasets for visual-inertial odometry applications
in Extended Reality (XR). To the best of our knowledge, there is
no dataset available that is captured from an XR headset with a
human as a carrier. To bridge this gap, we present a novel pose
estimation dataset — called HoloSet — collected using Microsoft
Hololens 2, which is a state-of-the-art head mounted device for XR.
Potential applications for HoloSet include visual-inertial odometry,
simultaneous localization and mapping (SLAM), and additional
applications in XR that leverage visual-inertial data.

HoloSet captures both macro and micro movements. For macro
movements, the dataset consists of more than 66,000 samples of
visual, inertial, and depth camera data in a variety of environments
(indoor, outdoor) and scene setups (trails, suburbs, downtown) un-
der multiple user action scenarios (walk, jog). For micro movements,
the dataset consists of more than 12,000 samples of additional ar-
ticulated hand depth camera images while a user plays games that
exercise fine motor skills and hand-eye coordination. We present
basic visualizations and high-level statistics of the data and outline
the potential research use cases for HoloSet.

CCS CONCEPTS
•Human-centered computing→Mixed / augmented reality;
• Information systems→Datamining; Spatial-temporal sys-
tems; • General and reference → Measurement.
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1 INTRODUCTION
Emerging technologies such as Extended Reality (XR) leverage
macro- and micro-level tracking to enable useful applications in
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healthcare [1, 31, 52], manufacturing [20, 27, 36], education [3,
24, 32], and gaming [12, 41]. Tracking algorithms used in such
applications rely onmultidimensional spatio-temporal relationships
among multimodal sensing streams from a combination of visual
cameras and inertial sensors. State-of-the-art tracking algorithms
typically use machine learning or deep learning algorithms that
require a lot of data for training [10, 43]. However, despite the
significant scientific and commercial interest in XR applications,
there is a lack of public datasets that facilitate XR research and
allow the development of novel applications.

There are several visual and inertial datasets available for the
related fields of autonomous vehicles and mobile robotic systems,
such as KITTI [19], ADVIO [15], OxIOD [11], YTU [21], and TUM
VI [42]. These datasets primarily provide camera images and In-
ertial Measurement Unit (IMU) data collected using hand-held de-
vices or vehicles. These datasets mainly target visual-inertial odom-
etry (VIO) [10, 14] and simultaneous localization and mapping
(SLAM) [2, 40]. However, this data is not suited for XR applications
where a user wears a Head-mounted Device (HMD) and requires an
understanding of the surrounding environment. Furthermore, these
datasets lack depth images, hand and eye tracking data, which is
required for spatial mapping, scene understanding, and keylogging
tasks. The data and capabilities mentioned above are essential to
enable novel, interactive, and useful applications in XR.

To bridge this gap, we collect and publicly release a dataset,
HoloSet, using Microsoft Hololens 2. Holoset is designed and col-
lected for academic and industrial researchers exploring new ideas
in the fields of VIO and SLAM, and other computer vision tech-
niques used in XR. We collect sensor data using a state-of-the-art
HMD - Hololens 2 [25] by capturing the raw synchronized data
streams from the following sensors: a depth camera, an RGB cam-
era, four grayscale visible light tracking (VLC) cameras, and an
IMU consisting of an accelerometer, gyroscope, and magnetometer.
Additionally, we record the ground truth pose trajectory. In the
future, we plan to add hand-tracking and eye-tracking data. For
macro movements, we provide more than 66,000 samples of data
in a variety of environments (indoor, outdoor) and scene setups
(woods, suburbs, downtown) under multiple user locomotion sce-
narios (walk, jog). For micro-movements, we provide more than
12,000 samples of data while a user plays games that exercise fine
motor skills and hand-eye coordination. In collecting and releasing
our dataset, we make the following contributions.
First contribution. A large dataset captured at a high frame rate
using an IMU sensor, one RGB camera, four grayscale cameras, and
a depth camera. To the best of our knowledge, this is the first dataset
collected using a head mounted device. Our dataset is available at
Zenodo [17], under the DOI 10.5281/zenodo.72001311.

1https://tinyurl.com/holoset-dataset
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KITTI [19] ADVIO [15] OxIOD [11] HoloSet (this paper)

Year 2012 2018 2018 2022
Carrier Car Hand-held Hand-held, bag, pocket, trolley Head-mounted device
Environment Indoors/Outdoors Indoors/Outdoors Indoors Indoors/Outdoors
Movement type Macro Macro Macro Macro/Micro
User actions Drive walk Halt, walk, jog, run Walk, jog + play games that exercise

fine motor skills and hand-eye coordination
Scene setup City-scale Multiple buildings Office buildings Multiple levels in 4 buildings + city

+ outdoor scenes center, urban scenes, and hiking trails +
micro movements inside a room

Hardware setup Custom [19] Smartphones Smartphones Microsoft Hololens 2
Data types Camera images, laser scans, Camera images, IMU data, IMU data RGB, depth, and gray-scale (4×) camera

point cloud, IMU and GPS data barometer data images, IMU data
Total distance ∼24 miles ∼2.8 miles 26+ miles 4miles
Ground truth GPS/IMU IMU + position fixes Vicon Hololens pose

Table 1: An overview of – and comparison with – the related datasets.

RGB Camera

Depth 
Camera

4 Head Tracking 
Cameras + IMU

Figure 1: Cameras and IMU sensor position on the HoloLens
2 headset (figure source [25]).

Second contribution. To the best of our knowledge, we provide
the first dataset that captures micro-movements. We provide more
than 12,000 samples of data where a user plays Jenga and Operation
games that exercise fine motor skills.
Third contributionWe provide a post-processing script that lever-
ages data conditioning techniques, i.e., synchronizing raw sensor
data across sensing modalities, to the raw data and provides clean
synchronized version of the data.
Fourth contribution. We outline a comprehensive list of future
applications where HoloSet can enable extended reality (and other
mobile and wearable device-based) applications.

2 RELATEDWORK
There are several datasets that provide visual and inertial data to
assist research in XR, mobile devices, and other wearable devices.
Some dastasets are used to develop visual-inertial odometry (VIO)
and SLAM algorithms such as KITTI [19], ADVIO [15], OxIOD [11],
YTU [21], and TUM VI [42], Oxford RobotCar [33], EuRoCMAV [7],
UMA-VI [57], PALVIO [54], ICL-NUIM [22], and Málaga [4]. Other
include datasets that focus on human gait (MAREA [28], OU-
ISIR [49]), occupancy (LARA [39]), and activity recognition (USC-
HAD [55], CMU-MMAC [16], Opportunity [9]).

However, in this section, we only discuss three closely related
VIO datasets (KITTI [19], ADVIO [15], OxIOD [11]). We briefly
summarize and compare these datasets to HoloSet (our dataset) in
Table 1. KITTI is a state-of-the-art benchmark dataset with data
collected in both indoor and outdoor environments. However, its
sensors are rigidly fixed to the chassis, that makes it suitable for
studying vehicle movements, but not directly applicable to studying

human movements (like ours). ADVIO and OxIOD datasets are
collected using the handheld devices that make them suitable for
human movement research. However, ADVIO data only provides
pseudo ground truth generated by their state estimation algorihtm
that only used inertial odometry. OxIOD provides highly accurate
ground truth generated using Vicon [35], but it only has inertial data.
In addition, OxIOD and ADVIO provide highly processed handheld
smartphone data that may hide actual nuances in readings. More
importantly, they are not collected using a head-mounted display.

In HoloSet, we collect data using a head-mounted device
(Hololens 2) that offers raw sensor data from 6 cameras (cover-
ing multiple views), an IMU, and highly accurate ground truth
(2-4 cm error [23, 45]). HoloSet also has diverse macro movements
(walk normally, slowly or jog, as well as halting) and wide range
of scenario covering various indoor and outdoor environments.
HoloSet also includes micro movement data that have articulated
hand movement with depth cameras. It also offers a large number of
samples, 80,000+, making it suitable for deep learning approaches,
which require large amounts of data and high-accuracy labels. In
summary, HoloSet better represents human motion in everyday
situations and provides a large number of samples to enable a wide
range of applications that may use simple to complex models.

3 HOLOSET DATA COLLECTION SETUP
In this section, we provide the data collection setup and detail the
data conditioning details for the HoloSet.
3.1 Data collection setup
We collect data from HoloLens 2 headset in research mode mounted
on the head of a user. Figure 1 shows the position of the various cam-
eras and sensors on the headset. We next describe the types of data
that we collect from headset and the software setup used to collect
the data across different settings, user actions, and environments.

3.1.1 Visual. Our visual data comes from two types of cameras.
First, we collect data from four visible light-tracking cameras (VLC)
that produce grayscale images at 30 frames per second. The second
source of visual data is HoloLens’s Photo-to-Video (PV) RGB stream
which is generated using an 8Mpix RGB camera. We capture the
images from the stream at 30-45 frames per second.

3.1.2 Inertial. The inertial data is collected from the HoloLens’s
Inertial Measurement Unit (IMU), which reports data from ac-
celerometer, gyroscope, and magnetometer.
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(a) left left (b) left front (c) photo video (d) right front (e) right right

Figure 2: Samples images from a suburban walk sequences for the four VLC grey-scale cameras – (a) left left, (b) left front, (d)
right front, (e) right right — and photo video RGB camera, (c) photo video.

3.1.3 Depth. HoloLens 2 has a 1Mpix depth camera that can op-
erate in two modes: Articulated HAnd Tracking (AHAT) and Long
Throw. AHAT mode provides a near-depth sensing images at 45
frames per second. Long Throw mode provides far-depth sensing
images at 1-5 frames per second rate. HoloLens uses AHATmode for
hand-tracking and Long Throw mode to compute spatial mapping.
The depth camera can operate in only one of the modes at a given
time. We collect depth camera images in Long Throw mode when
capturing macro movements and in AHAT mode when capturing
micro movements.

3.1.4 Ground truth. We report the pose values reported by the
HoloLens 2 as the ground-truth for our data. There is a lot of prior
work that evaluates the accuracy of the HoloLens 1 and HoloLens
2 tracking algorithm and shows that the reported position data is
highly accurate with an error in the range of 2-4 cm [23, 45]. This
accuracy is highly sufficient for all potential tracking applications.

Further details about the HoloLens’s hardware setup and the data
it provides can be found in the HoloLens research mode paper [50].

3.2 Data conditioning
In this section, we detail the data conditioning script that we provide
alongside the raw version of the data to generate the synchronized
version of HoloSet.

3.2.1 Cleaning. We observe that the IMU sensor of HoloLens
2 can erroneously generate abnormally large values (>105). If we
observe more than five consecutive abnormal values or more than
5% abnormal samples in the whole sequence, we discard the data
and regenerate the entire sequence. For other cases, we replace the
missing values using linear interpolation.

3.2.2 Synchronization. Our data collection setup collects data
from different sensors and cameras at different rates. The PV RGB
stream has the highest frame rate at ∼ 30 images per second, and
we use its timestamps as a reference to synchronize the data. For
IMU, VLC cameras, and depth cameras, we simply find the sensor
measurements and images closer to the particular PV timestamp.
The lowest frame rate in our dataset was∼20 samples per second for
the magnetometer, which means that the maximum time difference
between the PV data and any other sensor can be 2.5 ms. The
synchronized data is useful for training machine learning models

which often require different input features to have equally-spaced
and equal number of samples. We also provide the raw data and
the matched timestamps in HoloSet.

3.2.3 Data privacy. We anonymize the faces of people in the
images using Python’s OpenCV library [5]. We use Haar feature-
based cascade classifiers to detect faces in the images [44] and blur
them using OpenCV’s blur function for PV and VLC cameras. The
data set does not contain identifiable human information.

4 HOLOSET DATASET
In this section, we provide an overview of the different settings
in which we collect data, report key statistics on the dataset, and
provide sample visualizations of the collected data.

4.1 Overview
The goal of our dataset is to capture micro and macro movements
of a user while wearing an Extended Reality (XR) Head Mounted
Device (HMD) such as Microsoft HoloLens 2 [25]. The macro and
micro movements result from, and are of interest to, different kinds
of applications. Therefore, we collect the data in two different setups
that emphasize the respective movements. Tables 1 & 2 describes
the environment, the scene setup and the user actions for HoloSet.

4.1.1 Macro movements. These movements refer to an activity
that moves the entire body of a user from one physical location to
another, also termed locomotion. The most common examples of
locomotion are walking, jogging, and running (User Actions in Ta-
ble 1). Locomotion can occur indoors or outdoors. For the outdoors,
we consider three types of scene: a natural setting of a hiking trail,
a suburban street with moderate human and vehicular traffic, and
finally the city center of a university town. These three scene setups
have been the focus of all the previous datasets and cover most
of the current and future XR applications. For indoor settings, we
consider three environments: a low human-traffic environment of
a research building, a high human-traffic environment of a campus
center, and moderate human-traffic of a student center.

4.1.2 Micro movements. These movements refer to the fine
movement of a specific part of the user’s body, such as hands and
eyes. Inertial data has a strong temporal component, but it lacks
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(a) research building (3D view) (b) research building (side view) (c) suburban walk (3D view) suburban walk (top view)

Figure 3: Ground-truth trajectories of sequences collected while walking down from the third to the ground floors inside a
3-floor research building, (a) 3D view and (b) side view, and walking anti-clockwise inside a suburban housing society, (c) 3D
view and (d) top view.

Environment Action Seqs Samples Distance
(meters)

hiking trail walk 3 8518 686
suburbs walk 3 15150 1540

jog 5 8251 1003
city center walk 3 5132 407
outdoors - 14 37051 3636
campus center walk 2 5843 497
student center walk 2 5664 486
research center walk 4 17419 1648
indoors - 8 28926 2631
room jenga 5 10842 -

operation 2 1726 -
micro - 7 12568 -
all all 29 78545 6267

Table 2: HoloSet key characteristics.
the ability to perceive subtle spatial changes that occur due to mi-
cro movements, which are of interest to applications where users
engage in complex and intricate actions, such as surgery. To mimic
the behavior of a user in such applications, our user plays two board
games that exercise a user’s hand-eye coordination and fine motor
skills. The games that the user plays are Classic Jenga [58] and Op-
eration [46]. The user plays these games multiple times on a table
in a room. Currently, we provide depth images with articulated
hand movement tracking captured through a depth camera [50]. In
the future, we will add hand and eye tracking data to HoloSet.

4.2 Key statistics
Table 2 provides the high-level statistics of the collected dataset.
It contains 9 different combinations of environment, action, and
movement types. We collected a total of 14 sequences in outdoor
settings that contained more than 37k samples collected over the
course of 3636 meters. The indoor dataset contains 8 sequences
consisting of almost 29k samples collected over 2631m distance
inside three buildings. For micro movements, we collected 7 se-
quences consisting of 12.5k samples. Overall, our dataset contains
29 sequence and 78.5k samples that cover more than 6200 meters.

4.3 Sample visualizations
Figure 2 shows sample images from the 4 VLC (grey-scale) and 1 PV
(RGB) cameras in a single instance of the suburban walk sequence.
The stereo and peripheral setting of the VLC cameras captures the
complete view of the user’s path, as opposed to a single RGB image
typically provided by most datasets. HoloLens 2 also generates an
RGB image that captures the scene in front of the user.

Figure 3 shows sample ground-truth 3D and 2D trajectories from
an indoor walk in a research building and an outdoor walk in a
suburban housing society. The end-to-end length of the research
building is ∼55m (∼180ft) and has a height of ∼13m (∼430ft). The
3D trajectory Figure 3(a) shows the movement along the length of
the research building and towards the stairs. Since this walk started
at the top floor, the sideways view Figure 3(b) along the xz-plane
shows the drop in height over the course of the walk (-ve y-axis).

Similarly, the 3D trajectory Figure 3(c) for the outdoor walk
shows the change in height over the course of the walk due to the
hilly nature of the area. The top view Figure 3(d) shows the user
trajectory along the xy-plane. The ground-truth captures the fine
changes in the user trajectory over the course of the walk.

4.4 Future work
Our current version of the dataset contains sequences from a wide-
range of environments, as listed in Table 2. However, we plan to
keep updating HoloSet in multiple ways. First, we plan to add more
sequences for the same environment and user settings. We will also
add data for the same user under different settings and actions
such as walking on an indoor walk/jog track inside the campus
recreation center of our university. Second, we will add data for
more users for all environment and action combinations. Third, we
will welcome suggestions from the research community for new
user, environment, and action settings. We will satisfy reasonable
data requests at our earliest convenience. Finally, we will add hand-
and eye-tracking data in the future to enable a wide-ranging new
set of applications.

5 POTENTIAL USE CASES
Current tasks of interest for this dataset are: visual inertial odom-
etry, SLAM and tracking. Our datasets’ outdoor macromovement
sequences could be useful for several applications including pedes-
trian heading estimation [53], human velocity recognition [18],
outdoor navigation system [6], 3d tracking and forecasting [8], and
walking direction estimation [34]. Possible usecase for indoormacro
movement sequences are: pose estimation for ground robots[56],
human location recognition [29], indoor positioning and naviga-
tion in environments like residential buildings, offices [26, 51] Our
micro movement scenarios can be useful in developing tools for
surgical planning, training and real-time procedure [52], remote
collaboration on factory floor and warehouse [37, 47], and remote
maintenance [38].
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In summary Holoset can provide benefit in advancing overall
research and development for real-world tools that may or not be-
long to XR. Various such field of interest are stereo visual odometry
based on motion [13], deep learning based visual odometry [30],
feature-based visual odometry [10], visual SLAM for monocular,
stereo, and RGB cameras [48], and sensor fusion [14]. All of these
technique require diverse and large amount of data to be trained to
sufficient accuracy, that HoloSet fills that gap. Furthermore, com-
plex deep learning model can benefit from the multiple views of
the camera images that HoloSet provides.

6 CONCLUSION
In this paper, we presented HoloSet, a large dataset captured at
a high frame rate using an IMU sensor, one RGB camera, four
grayscale cameras, and a depth camera. To the best of our knowl-
edge, this is the first dataset collected using a head mounted device.
An additional novelty of the dataset also lies in capturing micro-
movements while a user plays Jenga and Operation games that
exercise fine motor skills. To facilitate the use of data, we provide a
post-processing script that leverages data conditioning techniques,
i.e., synchronizing raw sensor data across sensing modalities, to
the raw data and provides clean synchronized version of the data.
We inspire future research in this domain, we outline a comprehen-
sive list of future applications where HoloSet can enable extended
reality (and other mobile and wearable device-based) applications.
We currently release the raw data and conditioning code, which
is available at Zenodo under the DOI 10.5281/zenodo.7200131. We
will plan to provide an active support to HoloSet users and add
more scenarios to the existing dataset.
Acknowledgements. This research is supported by NSF grant
2230143.
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