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Abstract—Mixed Reality (MR) is rapidly becoming an essential
technology for critical applications such as physical therapy and
surgery, in addition to its early use for leisure activities. This
transition necessitates a focused look at the security aspects of
MR devices and applications. Prior work on MR security focuses
on generic aspects such as secure authentication and vulnerability
analysis. However, MR devices are multi-modal and spatiotem-
poral, which exposes them to attacks on sensor modalities across
spatiotemporal axes. Prior work has demonstrated attacks on
individual sensing streams, but modern, state-of-the-art sensor
fusion-based tracking algorithms can easily mitigate such attacks.

In this paper, we introduce a practical attack surface; it
simultaneously launches attacks on multiple sensing streams
across spatiotemporal axes to yield effective, stealthy, and precise
outcomes. To the best of our knowledge, our work is the
first to propose, design, and evaluate simultaneous multi-modal
spatiotemporal attacks. In doing so, we solve key challenges in
deciding what attack mechanisms to use, when to launch attacks,
and how to configure attacks. Using the tracking and navigation
use case of a user wearing an MR headset in real-world settings,
we demonstrate the effectiveness of our attacks over the user’s
trajectory in the presence of state-of-the-art sensor fusion-based
tracking algorithms and system checks.

Index Terms—mixed reality, tracking, sensor fusion, hololens

I. INTRODUCTION

The emerging applications in Mixed Reality (MR) rely on
multi-modal sensing and tracking of user activities and sur-
rounding environment via commodity sensing devices such as
Head Mounted Displays (HMD) [1], [2]. MR systems enhance
their experience by designing human-in-the-loop systems [3],
which are susceptible to security vulnerabilities that can im-
pact the physical safety of humans [4]. These vulnerabilities,
combined with the ubiquity of sensors, reduced field of view,
and use in critical applications, make MR systems an attractive
target for malicious activities targeting human safety [5]. To
mitigate such vulnerabilities, recent work on MR security
and privacy has explored issues of authentication [6], access
control [7], and digital biomarkers [8]. While these studies
target a private MR experience, they do not explore threats
to the security of fundamental MR services, such as tracking,
that pose threats to users’ physical safety.

In MR systems, the headset’s tracking capabilities are
provided to the applications as a core service, akin to tim-
ing services. The prevalence of immersive and interactive
applications raises concerns about potential physical harm to

This work was supported by the National Science Foundation under Grant
No. I2237485 and 2230143.

users relying on system services. If an adversary targets core
services, all downstream applications suffer, especially when
the attack goes unnoticed (stealthy) by the system or users.
Unfortunately, such concerns are justified, as prior work has
identified vulnerabilities in various stages of the application
pipeline. For instance, prior studies have successfully demon-
strated attacks on individual sensing modalities such as inertial
sensors [9] and visual sensors [10]. These attacks have serious
implications for the accuracy and security of tracking services
that rely on data from these sensing modalities.

Prior work on developing secure tracking services uses
data from multiple sensing modalities to mitigate threats
on individual sensing streams. For example, sensor fusion
algorithms like SelectFusion [11] combine data from visual
and inertial sensing modalities to improve tracking accuracy.
Sensor fusion-based tracking is effective against attacks on
single sensor modalities, where traditional tracking approaches
like VINet [12] fail. The fundamental principle behind Select-
Fusion tracking is that when data from one sensing modality
deteriorates under attack, the fusion algorithm prioritizes other
modalities to minimize degradation. Although sensor fusion
successfully counters attacks on individual sensing modalities,
other attack vectors in the MR tracking pipeline remain unex-
plored. Consequently, users of such platforms are vulnerable
to attacks that can jeopardize their physical safety.

This paper proposes a novel multi-modal attack surface in
MR tracking services resistant to sensor fusion-based tracking
methods. Our key insight lies in attacking the fundamental
principle of sensor fusion-based tracking by simultaneously
attacking multiple sensing streams. However, launching multi-
modal attacks simultaneously in a stealthy, precise, and prac-
tical manner poses significant challenges. The state-of-the-
art multi-modal learning methods leverage distinct sensor
strengths to estimate system states coherently. For instance,
inertial streams with strong temporal components and higher
frequency than visual streams are encoded using LSTMs [13].
Visual streams emphasize spatial components and are encoded
using CNNs [14]. The spatial and temporal features from
various modalities are complementary, forming a shared spa-
tiotemporal attack surface, which is not trivial to exploit.

A successful implementation of our proposed multi-modal
attack surface requires solving multiple challenges. A pre-
requisite is that the attacker can manipulate multiple sensing
streams simultaneously. As detailed in Section III, prior work



has successfully demonstrated attacks on both visual [10]
and inertial [9] sensing streams. However, the ability to
launch simultaneous multi-modal attacks does not guarantee
a desired outcome for the attacker. The non-visual streams,
such as inertial data [15], have strict semantic constraints,
and simple random perturbations are insufficient to deceive
fusion-based algorithms, necessitating careful manipulations
that avoid semantic inconsistencies. Also, stealthily launching
practical attacks requires simple manipulations executed at
precise moments to evade system checks or user observations.
Lastly, these manipulations must be controlled to achieve
precise and desired outcomes for the attacker.

We take an MR-assisted jogging application shown in
Figure 1, where a user follows an avatar on a set trajectory at
a fixed pace, as an example to demonstrate the efficacy of our
attack surface. The goal of the attacker is to alter the jogger’s
speed and change their trajectory. In doing so, we make the
following contributions in proposing and evaluating our novel
multi-modal spatiotemporal attack surface.
1) We propose novel frame-level manipulations for sensor

fusion applications that are simple, fast, practical, and free
from semantic inconsistencies. In doing so, we introduce
the notion of a frame for inertial data and develop spa-
tiotemporal frame-level manipulations for inertial sensors.

2) We develop new metrics based on the similarity between
consecutive frames, determining the threshold for manipu-
lations to evade system checks and user observations. Our
approach is systemic and iterative, addressing numerous
low-level challenges that arise in ensuring stealthiness.

3) We propose the Right Frame Selection (RFS) algorithm,
which guides an attacker on when to initiate attacks and
adjusts the magnitude of manipulations to achieve precise
outcomes. We leverage the RFS algorithm to propose multi-
ple sophisticated attacks on the multi-modal spatiotemporal
attack surface of the application shown in Figure 1.

4) We implement the tracking and attack pipelines to com-
prehensively evaluate our attacking approach in realistic
settings regarding stealthiness, effectiveness, and precision.

II. RELATED WORK

This section discusses related work on MR security, sensor
attacks, sensor fusion algorithms, and critical MR applications.
MR Security. Prior work on MR security focuses on vulnera-
bility analysis of application interactions [5], [10], [16], secure
authentication and pairing [6], [8], [17], security across- users
and devices [7], [18], and privacy in remote collaborations [1],
[7]. No prior work explores the multi-modal attacks on fun-
damental tracking services we explore in this paper.
Spatiotemporal Sensor Attacks. There is significant prior
work on sensor attacks across multiple dimensions, such as
data-level temporal and spatial attacks on inertial [9], [19]
and visual sensors [10], [20], device-level manipulation
of timing and location services [21], [22], and spatiotemporal
attacks to misalign content in MR and fool its tracking [8].
The state-of-the-art sensor fusion-based tracking algorithms
can overcome these individual data- and device-level attacks.
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Fig. 1: An MR-assisted jogging application. A headset-
wearing user follows an avatar on a set path for a run.
In contrast, our proposed concurrent multi-modal attacks are
resilient to sensor fusion algorithms and system checks.
Sensor Fusion. The state-of-the-art sensor fusion algorithms
use deep learning (DL)-based tracking with visual-inertial
odometry (VIO). In [11], the authors propose a robust DL-
based multi-modal fusion for VIO, utilizing latent features
from various sensor modalities to handle adverse conditions
like noise, occlusions, misalignment, and missing data. In
contrast, our work tackles malicious spatial and temporal mis-
alignment, distorting the latent features’ fundamentals. This
raises new challenges in securing sensor fusion, necessitating
exploring spatiotemporal attacks.
Security of Critical MR Applications. MR systems are
designed for fun and to support users with serious objectives.
It can enhance user experience in leisure non-critical applica-
tions such as navigating an unfamiliar college campus [23],
museum [24], [25], and escape rooms [26], [27] to critical ap-
plications such as construction [28], maintenance [29], facility
management [30], e-learning [31] to support highly critical
applications like fitness [32], driving assistance [33], rehabil-
itation [34], and surgery [35]. MR can enhance applications’
immersiveness, but its effectiveness relies on precise tracking,
essential for meeting efficacy standards and safeguarding users
against external attacks and internal malfunctions. These risks
vary from minor inconveniences like wrong navigation to
severe physical harm caused by collisions or reaching unsafe
destinations. In medical surgeries where surgeons rely on
accurate tracking for precise procedures [35], or in con-
struction where workers collaborate remotely on complex
structures [28], tracking errors could have perilous outcomes.

III. THREAT MODEL

This section presents the threat model for the proposed
multi-modal spatiotemporal attacks that aim to alter the trajec-
tory of a user wearing an MR HMD (see Figure 1). There are
two types of MR HMDs: opaque HMDs, e.g., Lynx R1 [36]
or Vision Pro [37], relying on a video stream to perceive the
physical world, allowing the attacker to manipulate both the
tracking system and the video stream; and see-through HMDs,
such as Hololens 2 [38], which provide direct view of the
physical world, requiring attacks on the tracking system.

Our assumptions involve standard attacking capabilities.
The attacker is physically close to the user, can visually access
the surroundings, can utilize a smartphone to launch context-
aware attacks [39], [40], and the attacker can choose the type
of divergence or damage [41]. However, the attacker cannot
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Fig. 2: Threat Model Overview.
access the headset or its firmware. However, they can acquire a
similar device to profile the behavior of sensor data, underlying
firmware, sensor fusion algorithms, and system verifiers.

We next describe the key aspects of our threat model and the
specific assumptions about our scenario, referring to Figure 2.
Malicious App Injection on MR HMD. Our attack methods
rely on reading sensor data to time attacks (details in §IV).
Eavesdropping on Hololens sensor data internally does not
need privileges as motion sensors are zero permission sensors
in recent devices [42]. Apps and background services can ac-
cess sensors without specific permissions as operating systems
lack fine-grained restrictions [43], allowing malicious apps to
gather sensor data, as shown by prior work [42], [44], [45].
Such apps can continuously operate as background services to
access data, like fitness trackers or virtual keyboards.

To gain data access, the attacker can disguise the malicious
app using malware-based internal eavesdropping techniques
through a device portal or offline app store [46]. By posing as
a tracking service app, the attacker can perform real-time com-
putations on the sensor data, establish wireless connections,
and collaborate with nearby attackers [47], [48]. Attackers on
the local network can also infiltrate the device portal to access
sensor data from the malware [46]. Hololens 2 includes ample
memory, multiple network channels, and computing power,
allowing a malicious app to execute computations on sensor
data, buffer frames, and transmit data to nearby devices.
Visual attack. The malicious app launches a man-in-the-
middle attack1 on visual frames that have been demonstrated
on HMDs [8], [49]. Protection against such an attack can
not be guaranteed unless the communication channels [50],
data integrity, and user authentication are improved [51],
[52]. Given such capabilities, the attacker can easily achieve
the visual frame manipulations, including duplicating [53],
dropping [54], and controlling the change between consecutive
frames [55] via man-in-the-middle attacks [10]. We assume
that she can buffer visual frames [20]. As our attacks do not
use forgery or occlusions, system checks do not flag them.
Inertial attack. The inertial sensing stream is analog and
cannot be attacked using the same method as the visual stream.
However, prior work shows that an attacker can externally
manipulate the analog signals on the signal conditioning path
before digitization using acoustics signals [9], [19]. In §IV, we
define the notion of frames for inertial data and discuss how
manipulations of acoustic signals [9] can be used to manipulate

1An adversary positions themselves between the user and the system,
intercepting and modifying the data exchanged between them.
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Fig. 3: The dynamic relationship between inertial samples
and visual frames as sampling and frame rates change.
inertial frames. Given this notion, the attacker can achieve the
inertial frame manipulations needed for our attacks, including
stretching, compressing, and shifting sensor measurements.

Given the computing power of modern handheld devices,
it is feasible to launch both attacks concurrently. The attacker
can use a smartphone’s speaker to generate inaudible acoustic
signals for inertial attacks [56] and control visual attacks
through the malicious app. Prior work [9], [10], [19], [20], [53]
has demonstrated both attacks; reimplementing them is outside
the scope of our work. Additionally, when combined across
modalities, the manipulations can resemble minor errors that
the tracking algorithm may ignore. For example, spatial alter-
ations may appear as axis misalignment and incorrect sensor
calibration [57]. The time shift between input image windows
and inertial measurement windows can be perceived as relative
clock drift between independent sensor subsystems [58].

IV. DESIGN

We present our approach to solving key challenges in
enabling the proposed multi-modal spatiotemporal attacks.
First, we introduce frame-level manipulations for inertial sen-
sors (§IV-A). Second, we outline our approach to developing
stealthy, effective, and precise attacks (§IV-B). Finally, we
present attacks that achieve desired outcomes (§IV-C).

A. Physical Basis of Frame Level Attacks
A frame is intuitive for visual attack vectors; refers to

individual images in a visual stream [54]. Manipulating visual
frames, e.g., dropping, duplicating, or rotating, is also well-
defined. However, no concept of frames and manipulations
exists for inertial sensors. Prior work achieves precise ampli-
tude modulation to print “WALNUT” [9] using inertial sensor
output. However, they do not define the notion of a frame or
devise frame-level manipulations. We introduce the concept
of an analog frame and propose mechanisms for manipulating
them. While we focus on inertial sensors, our approach extends
to other analog sensors, e.g., audio and pressure.
Defining inertial frames. The data rates for various sensors
vary due to resource or technology limitations [59], making
developing a shared temporal basis across sensors a challenge.
We propose a dynamic notion of an inertial frame that selects
the low-frequency sensor as the primary reference and maps
the data from the other sensor to the reference, as shown in
Figure 3. Our mapping adapts to the dynamic rate of both
sensors. This intuitive mapping simplifies the selection of
visual frames and inertial samples to add/drop during attacks.
Manipulating inertial vector. We must control a sensor’s
output and map the control to frame-level manipulations to
create a discrepancy between the true physical property a
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Fig. 4: Motivating design decisions: (a) every other frame is dropped as an attack, but attacks outside steadystate significantly
change the similarity index, (b) each modality is attacked whenever it is in steady-state, but concurrency of steadystates
makes attacks more effective, and (c) parameterizing attacks removes small steadystates to achieve precise deviation.
sensor measures (signal) and its digitized representation (data).
This should happen before data digitization, as the attacker
cannot manipulate the data once it enters the tracking pipeline.

We attack the core sensing mechanism that converts the
physical phenomenon into electric signals. As shown in prior
work, we can deliberately perturb the sensor to manipulate
the sensed signal in a controlled and precise manner. For
instance, acoustic [60], [61] and optical [62], [63] signals can
manipulate the conversion process of inertial and visual sen-
sors, respectively. Based on Microelectromechanical systems
(MEMS), modern inertial sensors consist of a sensing mass
connected to a spring, displaced under acceleration to create a
continuous voltage signal. Using acoustic waves, we can cause
the inertial sensor’s sensing mass to vibrate. A properly tuned
acoustic frequency can predictably alter the output [9], [19].
Physical model of manipulations. Suppose the sensor cap-
tures a periodic motion, producing a time-varying signal
Sorig(t). We generate an acoustic signal, Sacou(t), as our
attack mechanism to manipulate the sensor.

Sorig(t) = Aorig · sin(forigt)

Sacou(t) = Aacou · sin(2πfacout+ ϕacou)

Here, A, f , and ϕ are the signal’s amplitude, frequency, and
phase, respectively. facou equals sensor’s resonant frequency.

The signals pass through amplifiers to limit the signal
range and remove abnormal readings. Low pass filters (LPF)
remove high-frequency components and satisfy the Nyquist
requirement. The final signal is a combination of the two,

S(t) = Sorig(t) + k · Aatt · Sacou(t).

The attenuation coefficient, Aatt, is 1 at the resonant fre-
quency, the natural frequency of a sensing object with the
highest vibration amplitude. The attack frequency must match
this frequency to displace the sensing mass effectively. The
sensor’s resonant frequency and output magnitude, denoted as
Aacc, can be profiled using a similar device under acoustic
effects to identify suitable attack frequencies or by posing as
an app to obtain unrestricted read access to sensor data [46].
Add, drop, and misalign manipulations. In the visual stream,
dropping a frame (image) rapidly changes the scene between
consecutive frames, giving the impression of the user walking
faster. To achieve a similar effect for inertial frames, we
amplify the output of the inertial sensor by a factor of 2

(k = 2) along each axis (x, y, and z). Conversely, we divide
the magnitude by 2 (k = 1/2) to create a slowdown effect. For
misalignment, we multiply the signal by -1 for a 180◦ shift in
user orientation (ϕ = 180◦). The high fidelity control [9] and
the concept of the inertial frame form the basis of our attacks.
Finally, the low computational cost of adding or dropping a
frame in both attack vectors enables simultaneous attacks.
Matching inertial and visual manipulations. The attacker
uses the malicious app with finite buffering capacity for the
visual stream to drop or duplicate frames [20]. The camera
frame rates for modern MR headsets vary significantly; e.g.,
HoloLens 2’s frame rate fluctuates between 5-30 frames per
second [38]. This will make frames’ slow addition or drop
appear as normal fluctuations. The dropping of an inertial
sample differs from dropping an image, as their sampling rates
differ. We pick a time-varying primary sensor that determines
samples for the other streams for an equivalent effect.

B. Enabling Stealthy, Effective, and Precise Attacks

We start with a naive attack strategy and iteratively improve
it to design stealthy, effective, and precise attacks.

1) Attack Environment: In our naive strategy, we manip-
ulate alternate frames of visual and inertial attack vectors
by dropping, adding, or misaligning them. We evaluate the
efficacy of attacks using multiple metrics we define next.
Stealthiness. We measure stealthiness using the similarity
index (SI), which quantifies semantic overlap between adjacent
frames (fi and fi+1) and is used in VIO [64]. A 0 similarity
index means no overlap; 1 means identical frames. We use the
hamming distance between perceptual hashes for visual frames
as SI [65], which is robust to minor changes and effective in
error detection [66], [67]. We use locality-sensitive hashing
and scale-insensitive cosine distance for inertial frames [68].
Effectiveness. Effectiveness is measured as the deviation from
the original trajectory. A successful attack yields significant
deviation. The definition of significant depends on the context,
may vary across different scenarios, but always increases
monotonically with increased attack frequency or duration.
Preciseness. It evaluates an attack’s ability to achieve a desired
deviation consistently. This means an attack of a specific
duration should consistently result in the same deviation.

2) Achieving Stealthiness: Figure 4a shows the visual
attack vector’s hash values and similarity index under our naive



Algorithm 1: Right Frame Selection (RFS) algorithm.
Input: frames, history_length, warmup_length,

attack_length, SI_upperbound, SI_lowerbound,
Output: attack flag

1 attack flag ← 0; steadystate_counter ← 0
2 attack_counter ← 0; history ← FIFO buffer: [0: history]
3 while frames arrive do
4 history.append( frame)
5 if (history is full) then
6 get similarity index (SI) of adjacent frames
7 if (similarity index is within bounds) then
8 increase steadystate_counter
9 else

10 steadystate_counter ← 0; attack flag ← 0
11 if (steadystate_counter ≥ warmup_length) and

(attack_counter ≤ attack_length) then
12 increase attack_counter; attack flag ← 1
13 else
14 attack flag ← 0

strategy. The similarity index between consecutive frames
is within a tight range without malicious data. However,
attacking during scene transitions can drastically change the
similarity index due to rapid frame changes. System checks
can detect such anomalies and alert the user to a potential
attack or close the application. Conversely, under stable scenes,
the frame-dropping attack does not yield similarity index
outliers. This suggests that the attack vector’s state can help
determine the optimal timing for stealthy attacks. Interestingly,
the metric used to detect attacks also enables stealthy attacks.
Stealthiness Takeaway. System checks can detect attacks
launched during big scene changes. Launching fast attacks
during the attack vector’s steadystates can be stealthy.

3) Being Effective: While attacks during steady states are
ideal, the steady states of sensing streams do not always align.
In Figure 4b, we show the deviation achieved when attacks are
launched during each sensor’s steady state. We observe that
the deviation is small when a single attack vector is attacked,
even if severely, and a simultaneous attack on both streams
yields a larger deviation than the sum of individual attacks.
Also, launching attacks when both vectors are in a steady state
enables alignment and synchronization of individual attacks.
It allows the attacker to selectively launch attacks in specific
contexts, such as when the scene is stable.
Effectiveness Takeaway. The state-of-the-art sensor-fusion-
based tracking algorithms can mitigate attacks on individual
streams. However, a concurrent attack on both streams yields
a bigger deviation that cannot be mitigated.

4) Targeting Precision: Figure 4b shows aligned steady
state windows of varying lengths for both attack vectors.
However, accurately determining these windows in practice
is non-trivial. The attacker needs to estimate the start of the
steady state and determine when to conclude the attack.

Our approach monitors frame similarity indices and estab-
lishes a “normal” range or the steady state, defined by upper
and lower bounds for an attack vector. The steady state starts
when a specified number of frames (warm-up length) fall
within the range. Once in a steady state, the attack initiates and
continues for a set number of frames (attack length). Figure 4c
shows this approach, where the attacker waits for the warm-up
period (green windows) to launch the attack. This eliminates
short concurrent windows and allows controlling deviation by

Attack Attack Mechanism Attack Vector Attack Knob End Effect

SpeedUp Drop Camera Temporal App perceives speedup;
IMU Temporal prompts jogging slower.

SlowDown Add Camera Temporal App perceives slowdown;
IMU Temporal prompts jogging faster.

Zero Add, Drop, Camera Both Reaches the destination
Displacement Hist. Shift IMU Temporal using a different path.
Path Misalign, Camera Spatial Unable to reach
Deviation Hist. Shift IMU Spatial the destination.

TABLE I: Proposed multi-modal spatiotemporal attacks.
terminating the attack during large windows. These parameters
provide a trade-off between stealthiness, effectiveness, and
preciseness. Choosing a shorter warm-up period increases
attack effectiveness but reduces precision and stealthiness. A
longer warm-up period ensures precision and stealthiness but
reduces available steady states and effectiveness. Similar trade-
offs apply to the attack length: longer attacks are effective but
lack stealthiness and preciseness, and vice versa.

We formalize our approach as a simple algorithm, called
Right Frame Selection (RFS), which determines when to attack
(shown in Alg. 1). We next define the key terminologies.
• History Length (history_length): The number of

frames an attacker stores to decide on steadystate bounds.
• SI upperbound (SI_upperbound): The X%ile value for

the stored history. X is determined by offline profiling.
• SI lowerbound (SI_lowerbound): The (1-X)%ile value

for the stored history. X is based on offline profiling.
• Warmup Length (warmup_length): The number of

frames that need to be within bounds to declare steadystate.
• Attack Length (warmup_length): The number of frames

that are attacked within a steadystate.
Algorithm 1 automates frame selection for stealthy attacks.

Its input is a stream of frames and attack parameters, producing
the attack_flag as an output. A value of 1 hints the
attacker to continue; 0 hints the attacker to stop. Concurrency
is ensured by attacking only when the attack_flag is 1 for
all attack vectors. RFS stores incoming frames using a FIFO
buffer of size history_length. Once the buffer is full,
we calculate the similarity index for all frames and increment
the steady state counter if the index is within range. Steady
state is achieved when the scene remains consistent and the
similarity index stays within the range for warmup_length
frames. In a steady state, the RFS algorithm signals to initiate
the attack. The attack continues until the similarity index
exceeds the range or the number of attacked frames reaches
attack_length. All counters are reset now, and the algo-
rithm resumes searching for the next steady state.
Preciseness Takeaway. The attacker needs a simple config-
urable attacking approach to balance attack effectiveness and
preciseness. Finding the right configuration is crucial.

C. Proposed Attacks

We present four lightweight attacks that achieve a concrete
and quantifiable goal for the attacker, summarized in Table I.
1 - SpeedUp Attack. This attack drops frames across both
attack vectors. The attacker drops images to create a fast-
changing scene and reduces the inertial frame amplitude to
achieve the same effect. The speedup illusion prompts the
jogger app to slow the user, leading to ineffective jogging [69].
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Fig. 5: Multi-modal concurrent attack strategy overview
consisting of offline profiling and online attack stage.
2 - SlowDown Attack. This attack adds frames to the sensing
streams. The attacker duplicates the old images and reduces
the signal amplitude for the visual and inertial attack vectors.
The pacer app perceives a user slowed down and makes her
run faster, leading to harmful consequences [70].
3 - Zero Displacement Attack. This is the most challenging at-
tack that redirects the user from the source to the destination
through a new path leveraging frame-level manipulations, such
as adding, dropping, misaligning, and histogram shifting. In
this attack, we assume the attacker knows the destination.
The tracking algorithm relies on frames from i to i + m
to determine the user’s position and orientation [71]. The
attacker employs misalign manipulation to change the user’s
orientation away from the set path. The attacker can alter the
orientation back towards the set path at any point to ensure
the user reaches the destination. For a “misalign” attack on the
visual stream, the attacker employs a histogram shift attack
that keeps the histogram difference between adjacent frames
below a threshold. Our implementation detects changes in
frames using edge detection and applies the difference image
to minimize significant changes in the histogram difference.
4 - Path Deviation Attack. This attack uses misalignment and
histogram shift manipulations to disrupt spatial alignment for
the inertial and visual frames, similar to the path deviation
attack. However, it sets a destination point different from
the original destination. The incorrect pose data affects the
tracking application, causing the avatar to deviate from the set
path and leading the user towards the new destination.

D. Putting All Things Together

We have described the components for launching stealthy,
effective, and precise attacks. The attacker aims to deviate
the jogger from their trajectory or speed. To achieve this, we
present an attack pipeline with two stages in Figure 5.

In the offline phase, the attacker installs a malicious app
on the victim’s device with read-only access to the camera
and sensors. They analyze frame rates for attack vectors and
profile the relationship between RFS algorithm parameters
and deviations. This data helps them create attack strategies
and gather online stage parameters. In the online phase, the
attacker sets a goal, like slowing the user down, and uses the
profiled info to drop frames based on the context. They receive
data from the app, including RFS algorithm similarity index
bounds. By launching attacks on specific vectors, they trick
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Fig. 6: Configurability and Preciseness of Attack Surface.

the tracking algorithm into thinking the user is jogging faster.
The app provides user feedback to achieve the attacker’s goal.

These attacks enable speed manipulation and deviation and
serve as a foundation for more sophisticated attacks on safety-
critical applications. An attacker can achieve specific malicious
tracking objectives by combining different attack types.

V. EVALUATION

This section evaluates proposed spatiotemporal multi-modal
attacks’ preciseness, efficacy, stealthiness, and robustness.

A. Evaluation Setup
We mimic the real-time setup of an MR device using the

Robot Operating System (ROS) [72]. We detail our setup next.
Data. We collected real-world data by simulating a jogger with
a partner avatar in different environments (indoor, outdoor) and
scene setups (trails, suburbs, downtown). We used Hololens
2 in research mode [38], which includes an RGB camera,
four grayscale visible light tracking (VLC) cameras, and an
inertial measurement unit. The VLC cameras recorded data at
5-30 fps, and the inertial sensor data was collected at 12-20
samples per second [73]. We synchronized the inertial data
with images. We gathered ∼154k samples, equivalent to 2.5
hours of data with an average frame rate of 17 fps. We released
the dataset for public use as HoloSet [74].
Tracking. Since the exact tracking algorithm used in Hololens
2 is unknown, we use the state-of-the-art sensor fusion-based
tracking algorithm Select-Fusion [11]. Our model combines
raw images and inertial frames for pose transformations. We
train using collected data, with a 75%-25% train-test split. We
train Select-Fusion in stochastic fusion mode with PyTorch on
an NVIDIA GeForce RTX 2070 GPU, batch size of 8, Adam
optimizer, and learning rate of 1e−4. The mean squared errors
for training and testing were 0.0095 and 0.017, respectively.
Metrics. To evaluate system behavior under attack, we com-
pare the Cumulative Density Function (CDF) of the similarity
index before and after the attack. CDF is commonly used
for attack detection [75]; if the frame distribution remains
unchanged, the system is not perceived as under attack. We
use the Kolmogorov-Smirnov test to measure distribution sim-
ilarity [76]. A higher difference in arithmetic means signifies
higher variation among similarity indices.

B. Configurability and Preciseness of Attacks
As outlined in §IV-B4, an attacker can launch precise

attacks by configuring: (i) the percentage of frames to attack
and (ii) the number of frames attacked in an attack sequence.
They can configure these parameters using empirical experi-
ments that quantify the relationship between parameters and
deviation. Below, we present the results of such experiments.
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Fig. 7: The effect of SpeedUp (a) and Zero Displacement (b) attacks on the eventual speed of the jogger. We show the new
trajectory under attack (c) for the path deviation attack. We also show the similarity index (SI) for (c).
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Fig. 8: Effect of steadiness of a given window on the deviation
achieved in that particular window. Low variation in a given
window results in a more controllable and effective attack.
1 - Sensitivity Analysis of Similarity Index Metrics. Our
attack approach relies on frame similarity to configure the at-
tacks. Since the actual metric used by platforms like Hololens
2 is not publicly available, we compare two commonly used
metrics: Inter Frame Correlation (IFC) and hashing. Figure 6a
displays the CDF of hashing and IFC for a single sequence.
IFC fails to detect the subtle variations in the frame similarity
index, while hashing provides a more nuanced distribution.
We use hashing for subsequent experiments.
2 - Impact of Steady-state Window. The attacker can manip-
ulate the similarity index bounds to balance stealth, effective-
ness, and preciseness (see Section IV-B4). Figure 6b shows
the impact of steady-state bounds and attack length on the
percentage of frames attacked. Setting the bounds too low
results in fewer frames that can be attacked, while a 90%
upper-bound value encompasses almost all frames. Also, the
number of attacked frames increases as the attack length goes
from 1 to 10, with marginal growth beyond that.
3 - Stealthiness vs. Deviation. The final step is to map the
number of attacked frames to the deviation. Figure 6c illus-
trates the exponential relationship between the frames attacked
and the resulting deviation. The attacker selects attack param-
eters carefully for stealthiness and to avoid large deviations.
However, the attacker can profile the relationship effectively
since it remains consistent within a given environment.
Risk-reward trade-off. A large deviation requires attacking
more frames, increasing the risk of detection. A small attack is
stealthy but fails to achieve the desired outcome. An operation
within the 85%-95% steady-state bound and an attack length
of 1 enables a steady relationship. Targeting only 10% of the
frames can achieve a deviation of 2%-20%.

C. Effectiveness and Stealthiness of Attacks

In this section, we evaluate the effectiveness and stealthiness
of our proposed attacks. Since the SlowDown attack is similar
to the SpeedUp attack, subsequently, we only show the latter.

1 - Effectiveness. We measure the effectiveness of attacks
using the deviation from the intended speed or trajectory.
Figure 7 presents the time series of jogger speed before and
after 1-frame and 10-frame attacks for SpeedUp and Zero
Displacement attacks. The longer attack lengths cause signifi-
cant speed changes, up to 0.3 m/s, while shorter attacks have
minimal impact. Similarly, large attack lengths are needed for
the Path Deviation attack if the new destination points are
farther away from the original destination. At an attack length
of 10, the attacker achieves a 32-meter change in position and
1.5 radians change in the orientation. Note that all attacks
require an initial warm-up period where sequences match.
Key result. Our attacks are successful at smaller and larger
attack lengths, demonstrating their sensitivity to attack param-
eters and effectiveness against our attack surface.
2 - Stealthiness. The stealthiness of our attacks is measured
by their ability to achieve the desired goal without significantly
altering the distribution of the similarity index. Figure 7d
presents the distribution of the hashing function for the path
deviation attack before and after an attack of length 10. The
attack does not alter the distributions significantly. Note that
the y-axis starts from 0.7 to highlight even the minute changes.
Key result. Our attacks are stealthy despite achieving signif-
icant changes in speed and trajectory for a wide range of
attacks and cannot be detected by the system checks.

D. Effect of Steadiness on Attacks

Our proposed attacks are executed during the steady state,
where the frame similarity index can vary depending on the
environment. If the scene is unchanged, frames exhibit high
similarity, and vice versa. To evaluate our attacks under differ-
ent steady-state scenarios, we show the achieved deviation for
all the attacks against the standard deviation of the similarity
index within a window in Figure 8. Our attacking approach
selects steady-state windows with low standard deviation,
indicating minimal scene changes to ensure stealthiness. Fur-
thermore, our results demonstrate that high deviation can be
achieved even when scenes undergo minimal changes. Conse-
quently, our attack methodology applies to critical applications
such as surgery [35] and rehabilitation [77] that require precise
micro-movement tracking in a stable environment.
Key result. Our attacks are effective in stable and dynamic
scenes, making them applicable to critical applications such
as surgery, where scenes remain relatively stable.
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Fig. 9: Effect of a window’s steadiness on the deviation achieved (a) and the robustness of attacking approach against (b)
attack failures, (c) configuration errors, and (d) real-world scenarios.

E. Robustness of Attacks

We demonstrate the robustness of our attacks against frame-
level attack failures, frame selection, and real-world scenarios.
1 - Attack Failure. The attacker must manipulate sensor data
in real-time (see §V-F) without complete information on the
steady states of all sensors leading to some attacks failing.
Figure 9a shows a non-linear relationship between frame-level
attack failures (x-axis) and the achieved deviation compared to
no failure (y-axis). The initial failures significantly reduce the
achieved deviation. However, the attacker can alter the user’s
speed from 2 m/s to 2.1 m/s (intended 2.2 m/s) despite a 20%
frame-level attack failure. Even when most frame-level attacks
fail, our approach achieves a small deviation. Note that a 20%
failure rate for such manipulations is an overestimate [9], [10].
Key result. Our attacks are sensitive to attack failure rate but
still achieve most of the intended deviation.
2 - Frame Selection. We next show that an arbitrary frame
selection is less effective, less configurable, and less stealthy.
FixedLength approach launches periodic attacks of length
ten every N frames. EqualSum launches periodic attacks but
attacks the same total frames as RFS. XPercent attacks X%
of the frames in each sequence. Figure 9b shows all frame-
picking schemes when launching a slowdown attack. The
attacker cannot launch: a consistent attack (FixedLength), a
precise attack (EqualSum), or a stealthy attack (XPercent).
Table II compares attacks using ks value and speed change.
Key result. Arbitrary frame-picking schemes, besides RFS,
cannot launch effective, precise, or stealthy attacks.
3 - Real World. Figure 9c shows the original trajectory (black
line) and under-attack (zero-displacement attack, red line)
trajectories mapped to the real world. Our attack achieves
higher deviation when the path is straight and avoids attacking
when the scene changes or the user turns, showing context
awareness. Despite not using any technique to map surround-
ings, its steady state implicitly incorporates that information.
Key result. Our attacks are effective in the real world and
adapt their parameters to match the surrounding environment,
demonstrating context-awareness and adaptation.

F. Microbenchmarks

Our benchmarking shows that our attacks are fast, simple,
and suitable for the MR environment. The attacker must make
decisions, compute similarity indices, manipulate frames, and

Attack Attack percentage ks test statistic Mean difference
SlowDown 7.2 0.06 0.14

Speedup 7.2 0.07 0.11
Zero Displacement 7.2 0.05 0.03

Path Deviation 7.2 0.07 0.15
FixedLength 4.5 0.07 0.23
EqualSum 7.2 0.08 0.35
XPercent 10 0.13 0.49

TABLE II: Comparison of different frame picking schemes.
complete the attack within 33.33ms. The average inertial
similarity index computation takes 0.8ms (1.5ms max, 0.7ms
min). For visual attacks, it is 10ms on average (13.8ms max,
9.2ms min). Frame manipulation takes 5ms on average, and
the RFS algorithm runs in 0.0011ms. The average time is less
than 24ms, ensuring fast and stealthy attacks.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel multi-modal spatiotem-
poral attack surface for MR systems. We propose an attacking
approach that allows launching attacks that yield effective,
stealthy, and precise outcomes. Our evaluations demonstrate
the efficacy of our attacks against the state-of-the-art sensor
fusion-based tracking algorithm and demonstrate that the
attacker is able to achieve the goal across a wide range of
environments and user action scenarios.

In the future, we plan to conduct research to both improve
our attacking approach as well as develop defense mechanisms
against our proposed attacks. First, we will explore machine
learning techniques to find the right time to attack and develop
context-aware optimization techniques for maximizing the
attack impact and stealthiness. We plan to explore use cases
for our approach in safety-critical applications such as surgery
that include micro-movements.

Second, on the defense side, we aim to devise multi-modal
learning mechanisms to neutralize the proposed attack surface.
To the best of our knowledge, there is no single approach that
can be used to mitigate the effect of our proposed attacking
approach. However, a combination of online intrusion detec-
tion [78], acoustic dampening [79], and filtering [9] or visual
challenges [20] can be used to mitigate the efficacy of the
attacking approach to some extent.
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