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Abstract
Federated learning is emerging as a privacy-preservingmodel
training approach in distributed edge applications. As such,
most edge deployments are heterogeneous in nature, i.e.,
their sensing capabilities and environments vary across de-
ployments. This edge heterogeneity violates the indepen-
dence and identical distribution (IID) property of local data
across clients. It produces biased global models, i.e., models
that contribute to unfair decision-making and discrimina-
tion against a particular community or a group. Existing bias
mitigation techniques only focus on bias generated from
label heterogeneity in non-IID data without accounting for
domain variations due to feature heterogeneity.

Our work proposes a group-fair FL framework that mini-
mizes group-bias while preserving privacy. Our main idea
is to leverage average conditional probabilities to compute
a cross-domain group importance weights derived from het-
erogeneous training data to optimize the performance of
the worst-performing group using a modified multiplicative
weights update method. Additionally, we propose regular-
ization techniques to minimize the difference between the
worst and best-performing groups while ensuring through
our thresholding mechanism to strike a balance between bias
reduction and group performance degradation. Our evalu-
ation of image classification benchmarks assesses the fair
decision-making of our framework in real-world settings.

CCS Concepts: • Computing methodologies→ Machine
learning; Distributed computing methodologies.

Keywords: Federated Learning, Algorithmic Fairness, Group
Fairness
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1 Introduction
Federated learning (FL) is a privacy-preserving machine
learning (ML) technique wherein local models are trained
on decentralized edge devices (clients) and subsequently
aggregated at the server to form a global model. This ap-
proach alleviates the need for raw data transfers and ensures
data privacy, making it particularly well-suited for applica-
tions with privacy sensitivities, such as medical diagnosis
[21, 38, 59], next-character prediction[67], activity recogni-
tion [17, 56, 66], and human emotion recognition [14, 46, 72],
where preserving data security is imperative. Despite its mer-
its, there is a growing concern regarding FL models, as they
exhibit exceptional performance for certain groups while
simultaneously underperforming for others (e.g., providing
accurate image captioning for pristine group images than
noisy group images as shown in Figure 1). A group catego-
rizes data based on attributes such as race, gender, class, or
label [7].
Group biases and discriminatory practices threaten soci-

etal well-being, undermining public confidence inMLmodels
and their applications [7]. Research shows racial bias in elec-
tronic health records, especially in medical analysis, poten-
tially causing treatment disparities for minority groups [68].
Biased models often result from label heterogeneity in non-
IID data across clients, as discussed in works like [52, 57],
arising from diverse label distributions tied to data collec-
tion device environments. For example, certain geo-regions
may have varying label distributions, reducing training data
volume for specific groups [8, 30].

Our work highlights feature noise heterogeneity as a signifi-
cant source of group bias in FLmodels, stemming from varied
noise-influenced features due to domain differences, espe-
cially in heterogeneous devices [48]. Heterogeneity leads to
distinct feature distributions in local client data. For example,
low-quality sensors on some devices introduce distortion like
Gaussian noise, resulting in different feature distributions
compared to high-quality sensor devices [47]. This inherent
feature noise causes shifts in group data moments, which
are statistical properties such as mean and variance within a
group in a dataset [35], influencing biased model outcomes.
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Figure 1. Illustrating the adverse effects of feature heterogeneity (noise) and its bias impact on image classification data [42] on
an example language model (LM) in FL settings. The global LM, engaging in image captioning based on features from multiple
clients, shows higher performance for images without distortions compared to those with a shift in feature distributions. This
emphasizes the intricate interplay of feature heterogeneity and bias in FL, highlighting the influence of heterogeneous client
datasets on the model’s outcome.

Previous FL research introduces Disparate Learning Pro-
cesses (DLPs) to tackle bias and fairness issues. Examples of
DLPs include in-processing methods like [9, 11, 12, 15, 16, 18,
23, 31, 43, 44, 52, 57, 61, 73, 74, 76] and Robustness and gener-
alization strategies such as [34, 41]. In-processing techniques
modify learning to include group fairness constraints, while
robustness and generalization enhance model resilience in
diverse data settings. However, DLPs don’t ensure fairness in
settings with feature heterogeneity, especially due to feature
noise, as they don’t address misaligned moments in feature
distributions [35]. For DLPs that use "reweighting" with im-
portance weights to adjust the model’s objective function,
their effectiveness relies on suitable importance weight se-
lection [6]. Importance weights prioritize specific groups
or features during training to mitigate biases and enhance
fairness [6]. If not chosen carefully or not aligned with gen-
uine sources of bias, these weights can lead to continued
unfairness [6]. We propose using weights derived from noisy
feature data formore efficient debiasing in FLmodels affected
by feature noise. This work introduces learnable importance
weights from heterogeneous data features to enhance fair-
ness in training, utilizing the multiplicative weight update
(MW) method [3] for better fairness based on feature char-
acteristics, especially considering data characteristics with
feature noise. Our approach is inspired by insights from
social science, particularly addressing discrimination as a
health disparity determinant [36]. By incorporating learn-
able importance weights, we aim to mitigate biases across
demographic groups, contributing to a more equitable FL
framework.
The efficacy of importance weighting diminishes due to

exploding weight norms from the empirical risk scaling with
importance weights, especially in large models, risking over-
fitting [6]. To tackle this, we propose using neural network

regularization techniques [55] in Multiplicative Weight up-
date with Regularization (MWR) to mitigate group bias. Addi-
tionally, methods using importance weighting may introduce
unfairness by overly emphasizing poorly-performing groups,
potentially reducing the performance of better-performing
groups to minimize overall variability [13]. To address this
issue, we present a heuristic approach for deriving impor-
tance weights that mitigate group bias while maintaining a
performance threshold for better-performing groups, pre-
venting their performance from dropping below a desirable
level. We summarize our contributions below:

• Enabling Privacy-preservingGroup Fairness:We high-
light the notion of group fairness across clients in FL set-
tings and propose a Multiplicative Weight (MW) update
method to mitigate bias due to feature heterogeneity. Our
approach requires an estimate of the global group impor-
tance weights, which we compute as a mixture of cross-
domain likelihood estimates of heterogeneous local data
across clients in a privacy-preserving manner.
• Ensuring Optimality through Regularization: We ex-
tend our approach by incorporating the L1 regularization
technique to increase its effectiveness in mitigating group
bias, which we call MWR. It combats diverging weight
norms that fail to converge to a model that optimizes worst
group performance.
• Satisfying Worst- and Best-group Performance: We
ensure that MWR optimizes the performance of the worst-
performing group while also keeping the performance of
the best-performing group above a desirable threshold.
• Implementation and Evaluation: We implement and
evaluate theMWRmethod against existing bias-mitigation
techniques on commonly used state-of-the-art image clas-
sification FL benchmark datasets (CIFAR10 [37],MNIST [40],
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FashionMNIST [71], USPS [32], SynthDigits [24], andMNIST-
M [24]). Our findings show that MWR outperforms base-
line methods, boosting the accuracy of the worst group’s
performance up to 41% without substantially degrading
the best group’s performance.

2 Background and Related Work
2.1 Bias in Machine Learning.
Bias in ML refers to a model favoring specific individuals or
groups, leading to unfair outcomes [51]. Common sources of
bias in centralized learning include prejudice, underestima-
tion, and negative legacy [1, 8, 49]. Techniques such as pre-
processing, in-processing, and post-processing [22, 26, 33]
have effectivelymitigated centralized learning bias. However,
applying centralized learning techniques in FL is challenging
due to privacy concerns, requiring access to features across
clients and risking data privacy compromise.

2.2 Bias Metrics
In FL, group bias is assessed through three dimensions: 1) aim-
ing for equal opportunities by evaluating the performance
discrepancy in True Positive Rates (TPR) between groups
[58, 69]; 2) optimizing the Worst-case TPR (WTPR) for each
group [50, 58]; 3) minimizing the standard deviation of TPR
(TPSD) to ensure fairness across groups [58, 73]. The choice of
TPR as a performance metric of in assessing group group fair-
ness aligns our approach with recent advancements in bias
mitigation literature [58]. This decision stems from recogniz-
ing the critical importance of fairly detecting true positives,
which cannot be addressed solely by relying on accuracy.
While our primary focus is on achieving fairness with a
minimax property (optimizingWTPR outcome within each
group), we evaluate using various fairness metrics to ensure
versatility and broad support.

2.3 Bias Mitigation
The bias mitigation work falls mainly into four categories,
including: 1) Client-fairness techniques [12, 31, 43, 44, 52, 61],
2) Group-fairness techniques [9, 11, 15, 16, 18, 23, 57, 73, 74,
76], 3) Collaborative Fairness techniques [19, 48, 54, 75], and
4) Robustness and Generalization techniques [34, 41, 60].
Client fairness targets the development of algorithms lead-
ing to models that exhibit similar performance across differ-
ent clients [44]. On the other hand, group fairness requires
the model to perform similarly on different demographic
groups [73]. Many state-of-the-art fairness techniques in
FL, focusing on client fairness and group fairness, use in-
processing methods to modify the learning process or ob-
jective function by incorporating fairness constraints [73].
In-processing involves assigning weights to the objective
function from different clients or groups during training to
balance the influence of the model on different groups or
clients. For instance, AFL [52] optimizes the combination of

worst-weighted losses from local clients, proving resilient
to data with an unknown distribution. q-FFL [44] reweights
loss functions to give higher weights to devices with poorer
performance, addressing challenges in fair resource alloca-
tion in computer networks. TERM handles outliers and class
imbalance by tilting the loss function with a designated tilt-
ing factor [43]. GIFAIR-FL [73] introduces a regularization
term, regarded as loss function weighting, to guide the op-
timizer towards group fair solutions. Despite the benefits,
in-processing techniques face challenges, particularly sensi-
tivity to outliers and dependence on the choice of reweight-
ing schemes. If importance weights do not align well with
data characteristics, outliers introduced by noise can have a
significant impact, leading to biases. Feature noise may cause
alterations in the distribution of features among groups, in-
ducing discrepancies and bias in statistical properties.
Collaborative Fairness methodologies propose compensat-
ing each client’s performance based on their contribution to
learning the global model, intending to align rewards with
individual client input. This approach entails providing more
rewards to highly contributing clients, thereby encouraging
active participation in FL. Conversely, offering lower rewards
helps prevent free-riders, ensuring a fair distribution of in-
centives [48]. It is important to note that while we discuss
Collaborative Fairness, here does not specifically address miti-
gating group bias in FL, as these techniques do not inherently
focus on improving group performances.

Robustness and Generalization techniques address dis-
tributional shifts in user data. For instance, FedRobust [60]
trains a model to handle worst-case affine shifts, assuming
that each client can express its data distribution as an affine
transformation of a global distribution, focusing on group
fairness. However, FedRobust requires sufficient data for
each client to estimate the local worst-case shift, impacting
global model performance when this condition is unmet. Fed-
NTD tackles catastrophic forgetting distillation [29] but may
not fully handle bias from feature noise. SCAFFOLD [34]
addresses client drift in heterogeneous data by estimating
update directions. However, SCAFFOLD may not correct
moments in noisy feature distributions. In contrast, we use
importance weights from noisy features to prioritize dis-
advantaged groups during training, enhancing fairness by
indirectly correcting misaligned moments.

3 Preliminary Study
This section analyzes group-bias arising from heterogeneous
feature distributions within local data across clients. The
study utilizes Federated Averaging (FedAvg [45]), a widely
adopted aggregation method for training global models in
FL.

3.1 Experimental Setup
Applications and Datasets. Our study analyzes group-bias
across 𝐾 ∈ {4, 5} clients (computers that simulate the FL
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(a) CIFAR10 dataset
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(b) DIGITS dataset

Figure 2. Varied noise levels in CIFAR10 and DIGITS datasets. The notation "Noise = 𝑥" denotes the introduction of Gaussian
noise with variance 𝑥 ," specifically applied to clients 𝐷 and 𝐸 in CIFAR10 and clients 𝐴 and 𝐵 in DIGITS.

environment, mirroring real-world heterogeneous data col-
lection devices following recent works in FL [30, 52, 73])
using two deep learning models and two datasets. We em-
ploy the ResNet model [28] for CIFAR10 [37] image classifi-
cation and a Convolutional Neural Network (CNN) on the
DIGITS classification dataset, which comprises data from
diverse sources with feature shifts. The goal is to replicate
real-world FL scenarios with varied client data. We construct
the DIGITS dataset by combining data from SynthDigits [24],
MNIST-M [24], and MNIST [4].

We select these datasets to compare group-bias with exist-
ing bias mitigation techniques in FL. Each dataset is evenly
distributed among 𝐾 clients in the FL framework, ensuring
equal allocation of group data points. Clients utilize repli-
cated versions of the original benchmark test set, aligning
noise feature distributions between training and test data.
We set all model parameters to match FL parameters for

global model convergence under IID data settings, including
label and feature noise homogeneity. Client settings include
a mini-batch size of 128, a learning rate of 0.01, and 40 (for
CIFAR10) and 12 (for DIGITS) training rounds.
Heterogeneous Feature Distributions.We add noise to
mimic real-world distorted images that fail to share the same
feature distribution with the pristine training images [25,
62, 64]. In particular, we add Gaussian noise with a variance
greater than or equal to 0.03, consistent with the real-world
deployments[48]. We create two different distortion levels in
each dataset across 𝐾 clients. For the CIFAR10, three advan-
taged clients (A, B, C) lack distortions, while the other two
disadvantaged clients (D, E) host data with Gaussian noise
of variance 𝑣𝑎𝑟 ∈ {0.03, 0.07, 0.11, 0.3, 0.4, 0.8, 1.0}. For the
DIGITS dataset, two advantaged clients (C, D) lack distor-
tions, while the other two disadvantaged clients (A, B) host
data with Gaussian noise.

3.2 Key Findings
Non-IID Study. We study the FL model’s unfairness by
examining how the biased global model treats local groups

differently for each client. We measure the TPR performance
gap between the best and worst groups using each client’s
local test data (with a similar distortion level as the training
data). Figure 2a shows group-bias in CIFAR10, while Figure 2b
illustrates this in DIGITS. The global model’s recognition
of local groups varies per client, as seen in the discrepancy
between their performances. Increasing Gaussian noise on a
client amplifies this difference, indicating that heterogeneous
local features across clients contribute to group bias.
Limitation of Federated Averaging. We empirically in-
vestigate how heterogeneous local data distributions affect
local model gradients. Post-convergence, we extract gradi-
ents from the last linear layer of each local model across
two clients. Figure 3 shows histograms of these gradients,
highlighting variations across clients with heterogeneous
features (3b) compared to more consistent distributions in
clients with homogeneous features (3a). In 3a, a Spearman
correlation [53] of 0.46 indicates strong correlation and uni-
formity among clients with IID features. Conversely, in Fig-
ure 3b, clients with non-IID features show a correlation of
−0.14, suggesting dissimilarity.

Our non-IID study underscores the challenges in conven-
tional FedAvg schemes, revealing consistently unfair model
behavior across distinct applications and datasets. This prob-
lem emphasizes the need for bias mitigation methods to
alleviate adverse outcomes, including performance degra-
dation in critical applications like medical contexts and the
inability to adapt to dynamic heterogeneous environments.

4 Methodology
The primary objective of our work is to address group bias
resulting from feature heterogeneity across clients, all while
preventing the leakage of sensitive data. In this section, we
formally define our problem and then present our approach
to mitigate group bias without substantially degrading the
best group performance.
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(a) Correlation=0.46 (b) Correlation=-0.14

Figure 3. Gradient distribution in a fully connected layer on the CIFAR10 dataset. The red and blue bars depict the local
gradient distribution on client 1 and client 2, respectively. In (a), the distribution of local gradients is demonstrated across the
two clients in IID settings. In (b), the distribution is shown in non-IID settings, with the introduction of Gaussian noise with
variance 𝑥 (noise = 𝑥 ) on non-IID clients.

Algorithm 1 MW group-fairness in Federated Learning
1: Input: (x𝑖 , 𝑦𝑖 , 𝑔 𝑗 , 𝑐𝑘 ), global fairness learning rate 𝜂𝜇 ,

iteration count 𝑇 , model class 𝐻 .
Let 𝜖𝑔𝑗 ←− 1

|G |
∑
(x,𝑦) ∈𝑔𝑗 ℒ (ℎ𝜃 (x), 𝑦); (for each 𝑐𝑘 )

2: Initialize 𝜆𝑔𝑗 ←− 𝑃 (G = 𝑔 𝑗 ) and 𝜃 randomly.
3: for 𝑡 = 1 to 𝑇 do
4: for each client 𝑐𝑘 ∈ C do
5: Compute𝑤𝑡𝑔𝑗 ←−

𝜆𝑔𝑗

𝑃 (G=𝑔𝑗 )
6: Find ℎ𝑐𝑘 ←− argminℎ∈𝐻

∑
𝑔𝑤

𝑡
𝑔𝑗
· 𝜖𝑔𝑗 (ℎ𝑐𝑘 ); (for

ℎ𝑐𝑘 ∈ 𝐻 )
7: Update 𝜆𝑔𝑗 ←− 𝜆𝑔𝑗 · exp(−𝜂𝜇 · 𝜖𝑔𝑗 (ℎ𝑐𝑘 )); (Multi-

plicative Weight Update)
8: Send ℎ𝑐𝑘 (𝜽𝑐𝑘 ) to the server.
9: Server computes: 𝜃 ←− ∑

𝑐𝑘 ∈𝐶
𝑛𝑐𝑘
𝑛
𝜽𝑐𝑡 ; (FedAvg: 𝑛𝑐𝑘–

number of data points at client 𝑐𝑘 ; 𝑛–total data points
in FL)
Output: Uniform distribution over the set of models
ℎ1, ..., ℎ𝑇 with parameters 𝜽 1, ..., 𝜽𝑇 , respectively

4.1 Problem Statement and Workflow
Our configuration assumes a 4-tuple:

(x1≤𝑖≤ |X | , 𝑦1≤𝑖≤ |Y | , 𝑔1≤ 𝑗≤ |G |𝑐1≤𝑘≤ |C | )

drawn from distribution 𝑃 (X,Y,G,C). Here, x𝑖 ∈ X repre-
sents training images from a total of |X| images, 𝑦𝑖 ∈ Y
corresponds to |Y| targets, 𝑔 𝑗 ∈ G denotes group member-
ship (from |G| groups) of x𝑖 , and 𝑐𝑘 is the client on which
(x𝑖 , 𝑦𝑖 ) resides out of |C| clients. Our primary goal is to de-
rive a global model ℎ𝜽 (with parameters 𝜽 ) that mitigates
group bias for each client, with following objective:

ℒ (ℎ𝜽 ) = argmin
ℎ

1
|C|

|C |∑︁
𝑐𝑖=1

ℒ𝑐𝑘 (ℎ𝜽 (x𝑖,𝑘 ), 𝑦𝑖,𝑘 ) (1)

In equation 1 ℒ 𝑐𝑘 (ℎ𝜽 (x𝑖,𝑘 ), 𝑦𝑖,𝑘 ), the empirical risk of client
𝑐𝑘 combines group empirical risks ℓ𝑔,𝑗 (ℎ(x𝑖,𝑘 ), 𝑦𝑖,𝑘 )with group
importance 𝑤𝑔𝑗 . Importance is based on the ratio 𝑞 (𝑔𝑗 |x𝑖 )

𝑝 (𝑔𝑗 |x𝑖 ) ,
where 𝑝 (𝑔 𝑗 |x𝑖 ) and 𝑞(𝑔 𝑗 |x𝑖 ) represent training and test dis-
tributions in 𝐷 = ∪𝐷𝑐𝑘 (global dataset as a union of local
datasets 𝐷𝑐𝑘 ), respectively. We compute𝑤𝑔𝑗 as an aggrega-
tion of all per-client local group importance weights 𝑤𝑔𝑗,𝑘 ,
∀𝑔 𝑗 ∈ G, 𝑐𝑘 ∈ C. Each 𝑤𝑔𝑗 obtained from a multi-class lo-
gistic linear regression probabilistic model [27] is used to
train a local model, ℎ𝜃𝑐𝑘 , minimizing the empirical risk of
the worst-performing group. On the server side, ℎ𝜽𝑐𝑘

from
all clients is received and aggregated into a global model ℎ𝜽 .
Workflow. We illustrate the end-to-end workflow for train-
ing with the proposed approach in Figure 4.

❶ In our setup, the server selects all the available clients in
each round to avoid the effect of client sampling bias [10, 70,
77]. Then, the server distributes copies of the global model
to the clients.

❷-❹ Each client computes the mixture of group likeli-
hoods, denoted as 𝑝 (𝑔 𝑗 |x𝑖 ) (specifically, 𝑝 (𝑔 𝑗 |x𝑖,𝑘 )). In § 4.2,
we outline the privacy-preserving computation details of this
denominator, occurring once at the beginning of FL. After
each round, clients communicate the local model and local
𝑝 (𝑔 𝑗 |x𝑖,𝑘 ) for all groups (only in the first round) to the server.

❺After clients submit their localmodels and local 𝑝 (𝑔 𝑗 |x𝑖,𝑘 ),
the server uses FedAvg to aggregate the local models and
generate an updated global model. Additionally, the server
computes a mixture of group likelihoods for all groups using
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Figure 4. Overview of the proposed approach.

local likelihoods (emphasizing that this computation occurs
once at the beginning of FL).

❻ Each client performs local training after distributing
updated global model copies and a mixture of likelihoods for
all groups. The training involves using our approach MWR
to adjust group importance weights based on the mixture of
likelihoods for all groups (§ 4.3).

❼ Each client computes the performance threshold for the
best group and compares it with the best group performance
to evaluate MWR’s effectiveness in mitigating group bias
without compromising the best group performance (§ 4.5).

4.2 Enabling Privacy-preserving Group Fairness
Our approach centers on weighting empirical risks with
group importance weights, 𝑤𝑔𝑗 , as shown in Equation 1.
Calculating these weights is straightforward in centralized
learning [20], where a global data view is available. How-
ever, In FL, lacking this global view is not trivial. We must
estimate𝑤𝑔𝑗 while safeguarding client data privacy. Our so-
lution addresses this by approximating the denominator of
𝑤𝑔𝑗 (𝑝 (G = 𝑔 𝑗 |X)) through a process involving a mixture
of group likelihoods across clients. Suppose G = 1, ..., 𝑗 rep-
resents groups across clients in FL. Each client 𝑐𝑘 employs
a multiclass logistic linear regression probabilistic model
[2] to predict the likelihood of an input sample x𝑖,𝑘 belong-
ing to a specific group 𝑔 𝑗 . The model is defined as 𝑝 (G =

𝑔 𝑗 |X = x𝑖,𝑘 ) =
∏𝐽

𝑗
𝑓𝜽 , 𝑗 (x𝑖 ) [𝑔𝑗=𝑗 ] , where 𝑓𝜽 , 𝑗 (x𝑖,𝑘 ) [𝑔𝑗=𝑗 ] is a

multinomial probability mass function [39]. Each client uses
the softmax function 𝑓𝜽 , 𝑗 (x𝑖,𝑘 ) [𝑔𝑗=𝑗 ] =

∏𝐽

𝑗

exp (x𝑖,𝑘𝜽𝑐𝑘
)∑𝐽

𝑗
exp (x𝑖,𝑘𝜽𝑐𝑘

)
to

obtain group membership probabilities ensuring that these
probabilities are positive and sum up to one. Clients share
their group likelihood estimates with the server. The server
then computes each group’s global average likelihood using
per-client group average likelihood estimates and the law
of total probability. For an event space {𝑐1, 𝑐2, ..., 𝑐 |C | } with

𝑃 (𝑐𝑘 ) ≥ 0 ∀𝑘 ,

𝑝 (G = 𝑔 𝑗 |X) =
|C |∑︁
𝑗=1

𝑝 (G = 𝑔 𝑗 |𝑐𝑘 , x𝑖 )𝑝 (𝑐𝑘 ). (2)

Here 𝑝 (G = 𝑔 𝑗 |𝑐𝑘 , x𝑖 ) represents per-group likelihood esti-
mates per client, and 𝑝 (𝑐𝑘 ) is the likelihood of a client 𝑐𝑘 .
In our scenario, 𝑝 (𝑐𝑘 ) is uniform for all clients participating
in each training round. Utilizing the law of total probabil-
ity due to independence in clients’ participation in FL, the
server distributes group likelihood mixtures 𝑝 (G = 𝑔 𝑗 |X) to
all clients. Clients use this information to compute group
importance weights𝑤𝑔𝑗 , updated using MWR in each round
based on 𝑝 (G = 𝑔 𝑗 |X). To ensure data privacy, clients and
the server share required information (𝑝 (G = 𝑔 𝑗 |𝑐𝑘 , x𝑖 )) by
revealing differentially private likelihood estimates.

To solve the group bias problem, we modify theMW algo-
rithm and transform it into a constrained optimization prob-
lem to improve the performance of the the worst-performing
group. Algorithm 1 details the workings of the MW algo-
rithm. We assign each client with groups and a set of |G|
classes for the underlying application during the local learn-
ing process. The optimization constraints comprise decisions
made by both the local and global models for groups assigned
to clients, ensuring fairness in group classification. Using
image features in the training dataset, we validate constraint
satisfaction in each local training iteration and identify suit-
able groups. We then associate decisions made by each local
model with a group empirical risk that quantifies how well
a decision made by the local model satisfies the constraints.
Over time, we minimize the overall risk of the global model
by ensuring that each local model incurs a low per-group
risk. This involves tracking the global weight for each group
and randomly selecting groups with a probability propor-
tional to their importance weights 𝑤𝑔𝑗 . In each iteration,
we update𝑤𝑔𝑗 using the MW algorithm, multiplying their
numerator 𝑞(G = 𝑔 𝑗 |G) with factors dependent on the risk
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of the associated group decision. This update is performed
while maintaining the denominator 𝑝 (G = 𝑔 𝑗 |G) fixed as in
𝜆 ·exp (𝜂 ·ℓ𝑔𝑗 (ℎ) )
𝑞 (G=𝑔𝑗 |X) , which penalizes costly group decisions.

4.3 Ensuring Optimality through Regularization
The MW algorithm maximizes worst-group performance by
scaling the empirical risk and deep neural network weights.
However, the weight magnitude does not ensure optimal risk
function convergence [6]. In our setup, model parameters
𝜃 are trained with cross-entropy loss and stochastic gradi-
ent descent (SGD) [5] optimization, converging toward the
solution of the hard-margin support vector machine1 in the
direction 𝜽 𝑡

| |𝜽 𝑡 | | [65]. Introducing weight to the loss function
may introduce inconsistencies in the margin. Instead of di-
rectly applying importance weighting to the empirical risk,
we aim to minimize the following objective for each client 𝑘 :∑ |C |
𝑐𝑘=1 ℒ𝑐𝑘 (ℎ𝜽 (x𝑖,𝑘 ), 𝑦𝑖,𝑘 ) + 𝜆

𝑚

∑𝑚
𝑗=1∥𝜽 𝑗,𝑐𝑘 ∥ .

Since the optimization problem with importance weight-
ing is vulnerable to scaling weights and biases, we introduce
regularization to the norm of 𝜃𝑐𝑘 to increase the margin and
mitigate the risk of its enlargement due to scaling, form-
ing the basis of our Multiplicative Weight update with
Regularization (MWR) algorithm.

4.4 Bias Mitigation without Degrading
High-Performing Groups

WhileMWR ensures group fairness, importance weighting ap-
proaches may exbibit unfairness by disproportionately focus-
ing on the worst-performing groups, potentially degrading
the performance of the best-performing groups in an attempt
to reduce the variance in estimating their contributions to
the overall performance [13]. Practically, an algorithm for
bias mitigation should achieve fairness without significantly
degrading the performance of best-performing groups. To
address this, we propose a heuristic approach to reweighing
the likelihood (group importance weights) associated with
each data point belonging to group G = 𝑔 𝑗 in the dataset.
Suppose we have a set of unnormalized importance weights
𝑤1,𝑤2, ...,𝑤𝑛 corresponding to 𝑛 data points in a dataset,
where each data point has an associated importance weight,
we normalize these weights for each group by computing
𝑤1,𝑤2, ..., ˆ𝑤 |G | using:

𝑤𝑔𝑗 =

∑𝑛
𝑖=1𝑤𝑖 I(G = 𝑔 𝑗 )∑𝑛

𝑖=1𝑤𝑖
(3)

The rationale behind Equation3 is to distribute emphasis
evenly among different groups, preventing a scenario where
a single group dominates the estimation due to an excessively
high importance weight. Through weight normalization, we
ensure that each group’s contribution aligns more closely
with its true importance or representation within the dataset.
1A linear classification algorithm that seeks a hyperplane with a strict
margin, allowing no misclassification in the training data. [63]

4.5 Satisfying Performance Thresholds
Finally, we establish a performance threshold for the best
true positive rate (BTPR) to mitigate group bias without
significantly compromising the BTPR . We denote BTPR for
a client 𝑐𝑖 as 𝑇𝑃𝑅𝑏𝑒𝑠𝑡,𝑐𝑖 and WTPR as 𝑇𝑃𝑅𝑤𝑜𝑟𝑠𝑡,𝑐𝑖 . We define
the threshold for the best TPR as 𝑇𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . Our fairness
enforcement objective aims to minimize the gap between
the best and worst-performing groups while maintaining a
specified level of TPR performance, as follows:

𝑇𝑃𝑅𝑏𝑒𝑠𝑡,𝑐𝑖−𝑇𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝜂𝜇×(𝑇𝑃𝑅𝑏𝑒𝑠𝑡,𝑐𝑖−𝑇𝑃𝑅𝑤𝑜𝑟𝑠𝑡,𝑐𝑖 ) (4)

𝑇𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ 𝑇𝑃𝑅𝑏𝑒𝑠𝑡,𝑐𝑖−𝜂𝜇×(𝑇𝑃𝑅𝑏𝑒𝑠𝑡,𝑐𝑖−𝑇𝑃𝑅𝑤𝑜𝑟𝑠𝑡,𝑐𝑖 ) (5)
Here 𝜂𝜇 is a parameter governing the trade-off between
group fairness and performance. Inequality in 4 scales the
difference between BTPR and WTPR by 𝜂𝜇 and compares it
to the difference between the BTPR and the threshold. For
each client, we rearrange the inequality in 4 to obtain the
minimum BTPR threshold as expressed in equation 5.

5 Evaluation
This section evaluates our MWR group-bias mitigation tech-
nique on four image classification datasets (CIFAR10, DIGITS,
MNIST, and FashionMNIST). We benchmark our approach
against standard bias mitigation techniques in FL.

5.1 Experiment Testbed
Our evaluation setup uses the same number of clients, data
partitioning scheme, and other learning components (such
as learning rate, train/test split, batch size, epochs, rounds)
described in §3.1 unless stated otherwise.
Baseline. We evaluate our approach across four key cate-
gories, scrutinizing both bias reduction and overall model
performance. The FL baseline category (FedAvg) represents a
conventional learning scheme in FL. In the FL bias-reduction
category, we include methods such as AFL[52], TERM[43],
and GIFAIR-FL [73]. These methods employ empirical risk
reweighting to mitigate bias and adapt the global model to
diverse local data distributions. The FL heterogeneity cate-
gory (FedNTD [41]) specifically addresses performance loss
in FL models arising from data heterogeneity by managing
global model memory loss. In the FL robustness category
(SCAFFOLD [34]), the focus is on enhancing the resilience
of FL models against outliers and noisy data, thereby mit-
igating the impact of irregularities in specific device local
datasets. To ensure a fair evaluation across all baselines,
we meticulously calibrate hyperparameters across datasets,
guaranteeing the convergence of the global model.
Hyperparameter Tuning forMWR.We use the same exper-
imental setup as FedAvg, AFL, FedNTD, TERM, GIFAIR-FL,
and SCAFFOLD. However, to apply MWR update algorithm
per-group loss, we set the value of 𝜂𝜇 (see Algorithm 1) to dif-
ferent values in the set {0.01, 0.02, 0.001, 0.009, 0.0001} based
on the level of Gaussian noise in data partitions. Finally,
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MWR uses an 𝐿1 regularization parameter of 0.00001 for all
datasets.

5.2 Efficacy and Robustness Analysis
We now assess the efficacy and robustness of our MWR
group-bias mitigation technique with the baselines.

5.2.1 Effect on Group Bias. We assess the efficacy of
MWR’s group-bias mitigation through: (i) evaluating the
best- and worst-group performance (TPR), (ii) analyzing the
TPR group variance per client, and (iii) examining the TPR
discrepancy per client. This evaluation is conducted on four
datasets, incorporating low-grade distortion to simulate preva-
lent real-world heterogeneity [30].

Table1 presents the TPR, TPRSD, WTPR, and BTPR perfro-
mance scores across various bias mitigation techniques and
datasets. Notably, among these techniques, MWR stands out
by achieving a significantly fairer outcomes for groups. We
can see that our algorithm substantially decreases TPRSD
across most clients while maintaining a consistently high
TPR. Importance weighting, especially when derived from
features characteristics, is powerful inmitigating biases caused
by feature noise. If the bias is primarily driven by certain
features, assigning appropriate weights to these features can
help the model focus on relevant information and reduce the
impact of noisy features, resulting in more consistent and
equitable predictions.

AlthoughAFL and FedNTDoccasionally outperformMWR
in some instances concerning the TPRSD metric as can be
seen in DIGITS dataset’s client4 andMNIST dataset’s clients4
and 5, the differences between the results are marginal. Im-
portance weighting is sensitive to distribution shifts in the
feature space. If there are instances where the distribution
shifts significantly, the importance weights may not be as
effective. On the other hand, techniques such as FedNTD,
through knowledge distillation, seem to be more robust to
feature noise as it involves transferring knowledge from a
more complex model (teacher) to a simpler one (student), po-
tentially leading to better generalization and lower standard
deviation in true positive rates across groups. Additionally,
it becomes evident from Table 1 that MWR results in an
increased WTPR for the group with the smallest TPR, ac-
companied by the smallest TPRD among the evaluated bias
mitigation techniques.

Importance weights derived from image features captures
the distinctive characteristics of different groups more ef-
fectively than other methods. This adaptability is crucial in
mitigating bias since it tailors the mitigation strategy to the
specific features and challenges present in each group. De-
spite TERM appearing to outperform our proposed method
for the minimax group fairness metric (WTPR) in CIFAR10
dataset’s clients 1, 2, and 3, this can be understood as a con-
sequence of the reduction in TPR among privileged clients
lacking local data with distortions. This reduction elevates

the lower TPR among disadvantaged clients affected by dis-
tortions Importantly, the differences between the results are
marginal, indicating a closely competitive performance be-
tween the methods despite this disparity while elevating the
group-fairness among clients.
Takeaway: MWR ensures fairness across groups and main-
tains predictive accuracy by using importance weights that
prioritize the worst-performing groups. Its key strength lies in
maintaining fairness without sacrificing performance, achieved
through even distribution of importance weights among differ-
ent groups.

5.2.2 Robustness of Bias Mitigation. In our previous
analysis, we added low-grade Gaussian noise to mimic noise
in edge device images [47]. To further test MWR’s resilience
against increased feature heterogeneity, we raised noise lev-
els in segmented datasets like CIFAR10, MNIST, DIGITS, and
Fashion-MNIST to variances of 0.11, 1.10, 1.00, and 0.4, re-
spectively. Model performance evaluation used the same fair-
ness metrics as before. Table 2 displays TPR, TPRSD, WTPR,
and BTPR scores across various bias mitigation techniques
and datasets, exploring high-grade distortion scenarios in
local data. Consistent with our earlier findings, MWR de-
livers significantly fairer outcomes across diverse groups.
The table shows MWR reduces TPRSD across most devices
while maintaining high TPR. Compared with Table 1, MWR
increases WTPR for the lowest TPR group, resulting in mini-
mal TPRD among bias mitigation techniques. This enhance-
ment in WTPR for disadvantaged groups minimally affects
high-performing groups’ performance.
Although some bias mitigation techniques may slightly

outperform in TPRSD and WTPR fairness metrics, this of-
ten occurs at the expense of decreased TPR in privileged
clients not affected by distortions. However, this decrease
compensates for an increase in lower TPR among disadvan-
taged clients. Despite these differences, the results remain
closely competitive among methods, indicating similar per-
formance despite disparity, while simultaneously improving
group fairness among clients.
Takeaway. our robustness analysis suggests that MWR stands
out as a robust and fair approach even in scenarios with high-
grade heterogeneity, showcasing its effectiveness in mitigating
bias across diverse datasets and client groups.

5.3 Privacy Analysis
This section explores how differential privacy affects group
fairness and performance in MWR, particularly in scenarios
where local group probability distributions 𝑝 (G = 𝑔𝑖 |x𝑖,𝑘 ) are
shared with the server to compute importance weights. Differ-
ential privacy is crucial for preserving privacy in client meta-
data, preventing disclosure of sensitive details like group
selection probabilities.
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Algorithms Datasets
CIFAR10 DIGITS Fashion-MNIST MNIST

FedAvg [45]

Client # 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 5
TPRD ↓ 28 28 28 40 40 33 28 39 26 48 48 48 55 55 2 2 2 18 18
TPRSD ↓ 9.13 9.13 9.13 13.29 13.29 9.01 9.91 13.53 6.1 14.19 14.19 14.19 16.1 16.1 0.6 0.6 0.6 5.29 5.29
WTPR ↑ 64 64 64 54 54 63 66 53 69 47 47 47 40 40 98 98 98 74 74
BTPR ↑ 92 92 92 94 94 96 94 92 95 95 95 95 95 95 100 100 100 92 92

AFL [52]

TPRD ↓ 29 29 29 36 36 36 33 37 25 48 48 48 55 55 2 2 2 18 18
TPRSD ↓ 8.82 8.82 8.82 10.3 10.3 9.91 12.04 12.74 5.18⊙ 14.19 14.19 14.19 16.05 16.05 0.6 0.6 0.6 5.03 5.03
WTPR ↑ 62 62 62 56 56 59 60 55 70 47 47 47 40 40 98 98 98 75 75
BTPR ↑ 91 91 91 92 92 95 93 92 95 95 95 95 95 95 100 100 100 93 93

FedNTD [41]

TPRD ↓ 26 26 26 36 36 27 28 33 ∗ 28 46 46 46 50 50 2 2 2 17 17
TPRSD ↓ 8.38 8.38 8.38 11.51 11.51 8.02 7.88 12.54 7.71 13.83 13.83 13.83 14.96 14.96 0.6 0.6 0.6 4.24 ⊙ 4.24 ⊙
WTPR ↑ 66 66 66 57 57 66 65 56 64 49 49 49 45 45 97 97 97 76 76
BTPR ↑ 92 92 92 93 93 93 93 89 92 95 95 95 95 95 99 99 99 93 93

TERM [43]

TPRD ↓ 26 26 26 34 34 34 33 36 24 48 48 48 55 55 2 2 2 19 19
TPRSD ↓ 8.02 8.02 8.02 11.32 11.32 9.41 11.32 13.03 5.9 14.06 14.06 14.06 16.11 16.11 0.6 0.6 0.6 5.41 5.41
WTPR ↑ 69• 69• 69• 61 61 61 61 54 70 47 47 47 40 40 98 98 98 74 74
BTPR ↑ 95 95 95 95 95 95 94 90 94 95 95 95 95 95 100 100 100 93 93

GIFAIR-FL [73]

TPRD ↓ 24 ∗ 24∗ 24∗ 36 36 26 30 48 39 43 43 43 50 50 2 2 2 16 16
TPRSD ↓ 8.47 8.47 8.47 11.17 11.17 7.82 8.55 15.63 13.16 12.82 12.82 12.82 14.48 14.48 0.6 0.6 0.6 5.47 5.47
WTPR ↑ 68 68 68 56 56 68 64 44 52 53 53 53 46 46 98 98 98 76 76
BTPR ↑ 92 92 92 92 92 94 94 92 91 96 96 96 96 96 100 100 100 92 92

SCAFFOLD [34]

TPRD ↓ 29 29 29 65 65 60 64 84 73 50 50 50 60 60 2 2 2 25 25
TPRSD ↓ 10.19 10.19 10.19 20.42 20.42 18.02 20.94 26.35 24.64 14.63 14.63 14.63 17.24 17.24 1.36 1.36 1.36 6.57 6.57
WTPR ↑ 63 63 63 32 32 37 28 12 20 46 46 46 35 35 97 97 97 70 70
BTPR ↑ 92 92 92 97 97 97 92 96 93 96 96 96 95 95 99 99 99 95 95

MWR

TPRD ↓ 25 25 25 30 ∗ 30 ∗ 21 ∗ 19 ∗ 39 23 ∗ 37 ∗ 37 ∗ 37 ∗ 30 ∗ 30 ∗ 1 ∗ 1 ∗ 1 ∗ 13 ∗ 13 ∗
TPRSD ↓ 7.94⊙ 7.94⊙ 7.94⊙ 10.05⊙ 10.05⊙ 5.79⊙ 5.86⊙ 11.79⊙ 5.9 11.02⊙ 11.02⊙ 11.02⊙ 11.17⊙ 11.17⊙ 0.4⊙ 0.4⊙ 0.4⊙ 4.83 4.83
WTPR ↑ 68 68 68 63• 63• 77• 77• 58• 73• 61• 61• 61• 66• 66• 99• 99• 99• 80• 80•

BTPR-threshold 92.5 92.5 92.5 92.4 92.4 97.8 95.8 96.6 95.7 97.6 97.6 97.6 95.7 95.7 99.9 99.9 99.9 92.9 92.9
BTPR ↑ 93▷ 93▷ 93▷ 93▷ 93▷ 98▷ 96▷ 97▷ 96▷ 98▷ 98▷ 98▷ 96▷ 96▷ 100▷ 100▷ 100▷ 93▷ 93▷

Table 1. Performance evaluation of bias mitigation techniques across various datasets and benchmark models under low-grade
noise. Symbols used: ↑indicates that higher values are more desirable, while ↓ indicates that lower values are more desirable.
For each client across each benchmarks in a particular dataset ∗ signifies the best TPRD; ⊙ designates the best TPRSD; •
represents the best WTPR; and ▷ indicates the best BTPR . (Note: On DIGITS dataset,training involves only 4 clients, reflecting
its composition of merely 4 heterogeneous datasets.)

Algorithms Datasets
CIFAR10 DIGITS Fashion-MNIST MNIST

FedAvg [45]

Client # 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 5
TPRD ↓ 31 31 31 46 46 46 39 42 29 48 48 48 59 59 2 2 2 29 29
TPRSD ↓ 9.91 9.91 9.91 14.7 14.7 13.39 12.48 13.85 6.87 14.39 14.39 14.39 17.05 17.05 0.78 0.78 0.78 8.45 8.45
WTPR ↑ 61 61 61 48 48 46 56 50 66• 46 46 46 35 35 97 97 97 51 51
BTPR ↑ 92 92 92 94 94 92 95 92 95 94 94 94 94 94 99 99 99 80 80

AFL [52]

TPRD ↓ 33 33 33 44 44 47 43 40 29 49 49 49 59 59 2 2 2 28 28
TPRSD ↓ 9.36 9.36 9.36 14.13 14.13 13.6 14.01 13.35 ⊙ 6.9 14.65 14.65 14.65 17.11 17.11 0.7 0.7 0.7 7.63 7.63
WTPR ↑ 61 61 61 49 49 43 49 52 66 45 45 45 35 35 97 97 97 52 52
BTPR ↑ 94 94 94 93 93 90 92 92 95 94 94 94 94 94 99 99 99 80 80

FedNTD [41]

TPRD ↓ 26 26 26 56 56 35 29 37 27 46 46 46 50 50 2 2 2 25 25
TPRSD ↓ 8.91 8.91 8.91 16.69 16.69 10.65 9.03 13.64 8.76 13.83 13.83 13.83 15.01 15.01 0.74 0.74 0.74 6.77 6.77
WTPR ↑ 65 65 65 40 40 54 59 51 64 49 49 49 45 45 97 97 97 56 56
BTPR ↑ 91 91 91 96 96 89 88 88 91 95 95 95 95 95 99 99 99 81 81

TERM [43]

TPRD ↓ 23 ∗ 23 ∗ 23 ∗ 40 40 47 40 43 30 48 48 48 59 59 2 2 2 30 30
TPRSD ↓ 7.9 7.9 7.9 13.41 13.41 13.72 13.07 14.13 5.87 ⊙ 14.39 14.39 14.39 17.08 17.08 0.78 0.78 0.78 8.64 8.64
WTPR ↑ 69• 69• 69• 53 53 44 55 49 65 46 46 46 35 35 97 97 97 51 51
BTPR ↑ 92 92 92 93 93 91 95 92 95 94 94 94 94 94 99 99 99 81 81

GIFAIR-FL [73]

TPRD ↓ 30 30 30 53 53 32 37 48 40 45 45 45 53 53 2 2 2 27 27
TPRSD ↓ 8.16 ⊙ 8.16 ⊙ 8.16 ⊙ 14.92 14.92 10.13 10.18 15.69 13.06 13.4 13.4 13.4 15.46 15.46 0.66 0.66 0.66 7.64 7.64
WTPR ↑ 63 63 63 42 42 56 56 43 51 51 51 51 42 42 98 98 98 54 54
BTPR ↑ 93 93 93 95 95 88 93 91 91 96 96 96 95 95 100 100 100 81 81

SCAFFOLD [34]

TPRD ↓ 38 38 38 94 94 47 60 84 74 51 51 51 63 63 5 5 5 54 54
TPRSD ↓ 13.21 13.21 13.21 26.53 26.53 14.73 18.13 27.46 23.65 14.77 14.77 14.77 18.27 18.27 1.32 1.32 1.32 14.06 14.06
WTPR ↑ 57 57 57 5 5 48 35 10 22 45 45 45 31 31 95 95 95 29 29
BTPR ↑ 95 95 95 99 99 95 95 94 96 96 96 96 94 94 100 100 100 83 83

MWR

TPRD ↓ 29 29 29 33 ∗ 33 ∗ 28 ∗ 24 ∗ 44 29 38 ∗ 38 ∗ 38 ∗ 34 ∗ 34 ∗ 2 ∗ 2 ∗ 2 ∗ 20 ∗ 20 ∗
TPRSD ↓ 10.29 10.29 10.29 12.27 ⊙ 12.27⊙ 8.01⊙ 8.09⊙ 13.76 7.98 11.35 ⊙ 11.35⊙ 11.35⊙ 12.44⊙ 12.44⊙ 0.63⊙ 0.63⊙ 0.63⊙ 6.45⊙ 6.45⊙
WTPR ↑ 66 66 66 58• 58• 68• 69• 51• 65 59• 59• 59• 62• 62 98• 98• 98• 60• 90•

BTPR-threshold 94.7 94.7 94.7 90.6 90.6 95.7 92.7 94.6 93.7 96.6 96.6 96.6 95.6 95.6 99.9 99.9 99.9 79.8 78.8
BTPR ↑ 95▷ 95▷ 95▷ 91▷ 91▷ 96▷ 93▷ 95▷ 94▷ 97▷ 97▷ 97▷ 96▷ 96▷ 100▷ 100▷ 100▷ 80 ▷ 80▷

Table 2. Performance evaluation of bias mitigation techniques across various datasets and benchmark models under low-grade
noise. Symbols used: ↑indicates that higher values are more desirable, while ↓ indicates that lower values are more desirable.
For each client across each benchmarks in a particular dataset ∗ signifies the best TPRD; ⊙ designates the best TPRSD; •
represents the best WTPR; and ▷ indicates the best BTPR . (Note: On DIGITS dataset,training involves only 4 clients, reflecting
its composition of merely 4 heterogeneous datasets.)
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Figure 5. Examining the performance trade-off in𝑀𝑊𝑅 concerning privacy and accuracy across various levels of differential
privacy (DP) noise factors on FashionMNIST. In (a), a base Gaussian noise with a variance of 0.3 is introduced to all methods,
while in (b), Gaussian noise with a variance of 0.4 is applied to all methods.
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Figure 6. Examining the performance trade-off in𝑀𝑊𝑅 concerning privacy and accuracy across various levels of differential
privacy (DP) noise factors on MNIST. In (a), a base Gaussian noise with a variance of 0.8 is introduced to all methods, while in
(b), Gaussian noise with a variance of 1.1 is applied to all methods.

We use the MNIST and FashionMNIST datasets for our
privacy budget analysis, maintaining consistency in experi-
mental setups and various learning components as detailed in
§3.1. We introduce different levels of Laplace noise, denoted
by 𝜖 , to local probability distributions. An 𝜖 value of 0.00
represents perfect differential privacy in the implementation
of MWR.

Figures 5 to 8 show the impact of varying levels of Laplace
noise (𝜖) on group-fairness metrics (WTPR, TPRSD, and
TPRD) and group performance (TPR) in MWR, addressing
bias in local data with different levels of feature noise. In
Figures 5a to 7b, we see that using a privacy budget (𝜖 ∈
0.0, 0.4, 0.8) for metadata exchange maintains fairness met-
rics similar to deploying MWR without privacy (𝜖 −→ ∞)
on MNIST and FashionMNIST. This is evident from minimal
variations in WTPR, TPRSD, and TPRD across all clients
(with high and low feature heterogeneity) under all privacy
budgets. Moreover, the privacy budget ensures fairness while
preserving the best and worst TPR performance. This aligns
with the fairness guarantee of MWR, as the privacy budget
values (𝜖 ∈ 0.0, 0.4, 0.8) fall within a range that provides
algorithmic fairness, as noted in [1]. Our privacy analysis

underscores that our method ensures client privacy through
differential privacy on shared metadata without significantly
affecting bias or accuracy.
Takeaway. MWR demonstrates the feasibility of preserving
sensitive information while effectively reducing group bias.

5.4 Fairness Budget Analysis
MWR incorporates a fairness budget, denoted as 𝜂𝜇 , to regu-
late importance weight adjustments for fairness. This control
mechanism in MWR adjusts importance weights based on
past group performance (group loss) for fairness metrics. We
assess the impact of 𝜂𝜇 on group fairness metrics (WTPR,
TPRSD, TPRD) usingMNIST and FashionMNIST datasets, set-
ting 𝜂𝜇 to different values (−0.009,−0.003,−0.001,−0.0002).
Tables 3 and 4 show how the fairness budget 𝜂𝜇 affects both
group fairness and group performance (TPR) with MWR.
Increasing 𝜂𝜇 values improve fairness guarantees, leading
to better WTPR, TPRSD, and TPRD due to faster conver-
gence and adaptation to fairness issues. Conversely, lower
𝜂𝜇 values result in more gradual adjustments, slowing down
the algorithm’s fairness improvements. This experiment is
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Figure 7. Analyzing the privacy-bias trade-off in 𝑀𝑊𝑅 across differential privacy (DP) noise levels on FashionMNIST. (a)
introduces a base Gaussian noise with a variance of 0.3, and in (b), Gaussian noise with a variance of 0.4 is applied. Shaded
areas represent deviation represented by TPRSD.
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Figure 8. Analyzing the privacy-bias trade-off in𝑀𝑊𝑅 across differential privacy (DP) noise levels on MNIST. (a) introduces a
base Gaussian noise with a variance of 0.8, and in (b), Gaussian noise with a variance of 1.1 is applied. Shaded areas represent
deviation represented by TPRSD.

crucial for understanding how adjusting fairness settings im-
pacts outcomes, helping us strike a balance between fairness
and the specific fairness parameter we use.
Takeaway. Fine-tuning the fairness budget in 𝑀𝑊𝑅 signif-
icantly shapes the degree of fairness. Higher values amplify
fairness, while lower values diminish it, underscoring the piv-
otal role of this parameter in mitigating group bias.

6 Conclusion and Future Work
This study explores FL group bias in decentralized, heteroge-
neous edge deployments, where devices capture data with
diverse features often influenced by noise. Our framework,
MWR, uses importance weighting and average conditional
probabilities based on data features to improve group fairness
in FL across varied local datasets. Heterogeneous features in
local group data can bias FL models for minority clients, im-
pacting specific groups on those clients.MWR addresses this
bias by optimizing worst-performing groups without com-
promising the best-performing ones compared to other FL
methods. While effective, MWR relies on group information
to mitigate bias across clients, which can lead to persistent
loss discrepancies under severe feature heterogeneity. Future
work aims to incorporate methods for estimating and de-
noising data features to reduce noise without compromising
data quality. MWR is highly adaptable and can be extended
to complex applications beyond image classification. It can
optimize diagnostic outcomes in healthcare datasets, handle

multimodal and text-based applications like next-character
prediction and image captioning, and mitigate bias in emo-
tion prediction applications within FL settings, ensuring
equitable outcomes across diverse groups.
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