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Abstract
Federated learning (FL) is a promising paradigm for training decentralized machine
learning models with privacy preservation. However, FL models are biased, leading
to unfair model outcomes towards subgroups with intersecting attributes. To address
this, we propose LipFed, a subgroup bias mitigation technique that leverages
Lipschitz-based fairness constraints to mitigate subgroup bias in FL. We evaluate
LipFed’s efficacy in achieving subgroup fairness across clients while preserving
model utility. Our experiments on benchmark datasets and real-world datasets
demonstrate that LipFed effectively mitigates subgroup bias without significantly
compromising group fairness or model performance.

1 Introduction

Federated learning (FL) trains a global model using decentralized edge devices’ private data without
collecting their data centrally, promoting collaborative learning while preserving data privacy [35].

Figure 1: Subgroup Bias in FL. The global
model achieves 100% accuracy on Client 1’s
diverse subgroup but only 17% on Client 2’s
predominantly black women subgroup, high-
lighting bias from uneven data distribution
across clients

This makes FL suitable for privacy-sensitive appli-
cations such as medical diagnosis [12, 26], gender
prediction [25], next-character prediction [48], and
activity recognition [10, 37, 47]. Despite collabora-
tive learning and privacy preservation benefits, FL
inevitably learns undesired biases from statistically
heterogeneous clients’ data [1]. For instance, a crime
detection FL algorithm may predict crime suspects
based on skin color [4], leading to the wrongful predic-
tion of who goes to jail [40]. Unchecked biases in FL
can erode user trust and negatively impact user expe-
riences, affecting FL adoption and acceptance. Recent
FL research has focused on addressing bias, target-
ing individual bias [31, 36, 6, 30, 20, 16] and group
bias [55, 5, 38]. Individual bias techniques aim to
ensure similar model performance across clients [38],
with approaches like [36, 6, 35] optimizing the worst-
performing client’s performance through importance weighting. In contrast, group fairness techniques
(fairness across multiple sensitive attributes [50]) enforce fairness constraints for individual attributes
like race, gender, or label [38, 3]. However, they often do not guarantee fairness for subgroups with
intersecting characteristics, performing well for some while failing others, as discussed in Example 1
and Figure 1.
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Example 1. In a hypothetical scenario with race (black and white) and gender (male and female)
as groups, consider a classifier predicting positive outcomes only for black men or white women.
This classifier appears fair across groups, predicting positively for both men and women 50% and
both black and white groups 50% of the time. However, examining subgroups like black and white
women violates statistical parity fairness. For instance, black women may be disproportionately
labeled unfavorably, causing an unfair disadvantage for this intersectional subgroup. This example
demonstrates Simpson’s Paradox [39] in fairness evaluation, where seemingly fair techniques for
groups become unfair for their fine-grained subgroups.

In FL, subgroup bias arises because subgroups across clients fail to be independent and identically
distributed (IID). This deviation from IID-ness happens because subgroups across clients can have
diverse feature distributions due to factors such as geographical location, weather, and data collection
devices [18, 34]. For example, images of black and white female faces can vary dramatically
worldwide due to their skin color. Images of black and white female faces can also look very
different given the quality of their collection devices; low vs. high-quality collection devices, etc.
Subgroup fairness is vital because it reveals hidden biases within intersecting groups, as illustrated in
the previous example. Ensuring fairness across both intersectional subgroups and broad groups is
necessary to avoid biases. Based on this requirement, our research question is: how can FL models
achieve subgroup fairness without compromising overall group fairness and model utility?

To address subgroup fairness in FL, we propose Lipschitz Fair Federated Learning (LipFed), a novel
framework applying the Lipschitz property [9] to decentralized FL. While Lipschitz constraints have
been used before (§B.1), our approach uniquely adapts them to ensure equitable model performance
across diverse subgroups on different devices. LipFed leverages a distance metric to measure subgroup
similarity and performance distributions across clients, overcoming the complexity of decentralized
data(§4.1).

Contributions. In summary, we make the following contributions:
1. We identify the subgroup bias problem in FL (§3), focusing on bias at the subgroup level

rather than statistical bias across fixed demographic groups, addressing intersectional biases
more comprehensively, ensuring fairness, and reducing discrimination based on intersecting
attributes.

2. We propose LipFed, leveraging the Lipschitz property to train subgroup fair models in FL,
ensuring minor changes in sensitive features lead to minor changes in model predictions, thus
promoting fair subgroup outcomes in FL models.

3. We conduct theoretical analysis and establish precise bounds for subgroup and statistical
fairness. By providing clear bounds (§4.2, §C.1), our work promotes a more transparent and
accountable approach to addressing subgroup and statistical fairness challenges, fostering trust
and reliability in FL.

4. We apply the LipFed across datasets (§5), reducing subgroup bias by up to 49% without
degrading model utility, though with some trade-offs in statistical fairness, clarified through our
theoretical analysis (§C.2). LipFed also improves other existing FL methods, by up to 25% in
mitigating subgroup bias.

2 Related Work

This section reviews methods in FL fairness, focusing on those related to subgroup fairness. While
subgroup fairness is recognized in centralized learning, we address the unique challenges of FL and
highlight the limitations of existing approaches. Due to space constraints, additional methods are
discussed in Appendix D.

FL algorithms aimed at achieving a globally fair model are typically classified into three distinct cate-
gories, including client-fairness[31, 36, 6, 30, 20, 16], group-fairness[55, 5, 38, 45], and robustness
techniques [29, 21].

Client fairness. Ensuring fairness among clients in FL is essential to mitigate biases from non-
IID data distributions across devices. Techniques such as Federated Fair Averaging (FedFV) [51]
adjust gradient directions and magnitudes to balance model average performance based on client
contributions [38], while GIFair-FL [54] dynamically modifies model updates with a fairness-aware
aggregator to reduce average loss. FjORD [16] employs ordered dropout to customize model sizes to
client capacities, enhancing both fairness and accuracy. Additionally, Agnostic Federated Learning
(AFL) [36] tailors the global model to any client distribution mix, q-FFL [31] reweights losses to favor
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lower-performing devices, and Tilted Empirical Risk Minimization (TERM) [30] fine-tunes outlier
impact and class representation, collectively improving average performance in diverse environments.

Group fairness. Recent advancements in FL emphasize addressing group fairness and biases against
protected groups. FairFed [11] uses fairness-aware aggregation and local debiasing to enhance group
fairness under heterogeneous data conditions. FedMinMax [38] employs alternating optimization for
minimax fairness across demographic groups, showing competitive performance. FCFL [5] combines
algorithmic fairness and performance consistency, achieving Pareto optimality via gradient-based
methods and outperforming existing models in fairness and utility.

Limitations of existing techniques. While valuable, current bias mitigation techniques in FL do not
ensure fairness for subgroups with overlapping characteristics. According to Simpson’s Paradox [39],
seemingly group-fair techniques may still exhibit unfair outcomes towards fine-grained subgroups.
The following section explores these deviations and their implications through empirical studies.

3 Preliminaries and Problem Formulation
This section defines formal definitions of FL and the problem of subgroup fairness addressed in this
paper, establishing the study’s framework. Specifically, this section covers the local data heterogeneity
of decentralized FL clients, how FL learns from such heterogeneous data across clients, and subgroup
fairness in FL. In this section, the key question we aim to answer through an empirical study is: what
is the effect of data heterogeneity on subgroup fairness across clients in FL?

3.1 Preliminaries
Federated learning (FL). trains a global model using a server and K decentralized clients, ensuring
privacy by not sharing their local data. Each client k ∈ K has its private local dataset Dk = {Xk,Yk},
with Nk tuples {(xn

k ∈ Xk, yk ∈ Y n
k )}Nk

n=1 representing input and output spaces. These private
datasets can be grouped by attributes like race, gender, or label [3]. The local group dataset on client
k is Dg,k = {Xg

k ,Y
g
k }Ng with Ng ≤ Nk samples where g ∈ G indicates group membership. In

ideal IID scenarios, clients sample Dg,k independently from a global distribution fg(X). However,
real-world FL scenarios often feature non-IID/heterogeneous data due to factors like inter-partition
decorrelation [18, 33], which occurs when clients fail to share standard specifications/features,
resulting in decorrelated local group data across clients.

Subgroups. FL aggregates non-IID local group data from decentralized clients into a unified dataset,
D =

⋃K
k=1 Dk, representing global groups from multiple sources. Each client’s local data Dk

includes unique local groups Dg,k. Thus, D integrates these groups, and each global group (e.g.,
females) includes local group structures from all clients. We refer to these local groups as subgroups
of that global group within the unified data representation. FL uses the unified dataset D to learn an
optimal global model h∗ (with global parameters θ) from a class of hypotheses H that map input
features xn

k to outputs ynk . The optimal model minimizes the empirical risk objective with Fk as the
empirical risk for client k with local parameters θk as:

θ∗ = argmin
θ

{
R(·;θ) =

K∑
k=1

(
Nk∑K
k=1 Nk

)
Rk(hθk

(Xk),Yk)

}
(1)

Subgroup fairness in FL. Many FL works aim to achieve a modified formulation of Equation 1 for
group-fair model parameters [36, 54, 30], often overlooking subgroup fairness. Suppose there are nk

subgroups {gk}Nk

k=1 within a group g. Let the performance measures of models h1 and model h2 for
these subgroups be represented as true positive rates (TPR), be {agg,k1 }Nk

k=1 and {agg,k2 }Nk

k=1, respec-
tively. Model h1 is more subgroup fair than model h2 if Disch1

({agg,k1 }nk

k=1) < Disch2
({agg,k2 }Nk

k=1),
where performance discrepancy Disch is calculated as (detailed theory in §F.2):

Disch({ag,k}Nk

k=1) = max{ag,k − ag,k
′} ∀k, k′ ∈ K; k ̸= k′ (2)

Higher performance discrepancy indicates greater variation in subgroup performance metrics, in-
dicating potential bias. Performance is measured using TPRg =

TPg

TPg+FNg
from fairness-aware

optimization in FL [41] where TPg counts true positives (correctly classified instances) and FNg

counts false negatives (incorrectly classified instances) for group g (theory in §F.1).
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Lipschitz fairness. Achieving individual-level fairness across similar entities x and x′, where the
similarity of these entities is quantified by the distance metric d(x,x′), can be done by optimizing
the model to satisfy the Lipschitz property [9].

Definition 3.1 (Lipschitz model). A model hθ : G → ∆(A) satisfies the (D, d)-Lipschitz property if
for every x,x′ ∈ G ∃ϵ > 0 such that:

D(hθ(x), hθ(x
′)) ≤ ϵ · d(x,x′). (3)

Here, d : G×G −→ R quantifies the similarity between individuals. Without a well-defined metric,
d(·) reflects the "best" available approximation agreed upon by society [9]. hθ : G → ∆(A) maps
individual samples to outcomes (e.g., an individual’s TPR).

Intuition. In diverse FL edge deployments with non-IID local data, the global model aggregated via
FedAvg [35] can converge to an unfair model towards subgroups in a group across clients. But the
Lipschitz condition in Equation 3 requires that similar individuals x,x′ should have outputs hθ(x)
and hθ(x

′) with the Euclidean distance D(hθ(x), hθ(x
′)) between hθ(x) and hθ(x

′) is at most
d(x,x′).

3.2 Experimental Setup
To examine the impact of non-IID data on subgroup bias in FL, we conduct experiments on image
classification using FedAvg to aggregate local models. We use four deep learning models across
six datasets (two benchmarks, two real-world, and two fairness-based and large-scale), partitioned
based on non-IID features across K = 5, 10 clients. For model setup, ResNet [15] is applied to
FER2013 [14] for emotion recognition (grouping seven emotions [38]), LeNet [27] for MNIST [2]
(with each digit as a group), VGGNet [7] for FashionMNIST [53] (with each product as a group),
ResNet for UTK [44] (for gender prediction), and Logistic Regression [17] for two ACS datasets [8]
(for income: ASCI and employment prediction: ASCE). For ASCI, data is distributed by state to form
two groups (Income True/False), with the state acting as an implicit sensitive attribute. For ASCE,
data is filtered for individuals aged 16 to 90, forming employed/unemployed groups (see §E.3).

Note: Though our experiments involve a limited number of datasets and clients, the theoretical
guarantees in C ensure that LipFed’s fairness and utility scale are reliable for the scope of the
academic paper. These guarantees validate the robustness of our approach, even in broader FL
settings.

Data Partitions. Benchmark and real-world datasets are partitioned across clients using a Dirichlet
distribution [19, 50]. For the income and employment tasks, data is naturally partitioned across
approximately 50 clients, allowing us to validate the scalability of our approach in more complex
settings (more details about experimental setup can be found in E.

Heterogeneous feature distributions. We simulate feature noise in image data with Gaussian
distribution (Ĩ(x, y) = I(x, y) + ϵ, where ϵ ∼ N (0, σ2)) to explore bias in global models due
to non-IID subgroup data diverging from pristine distributions, controlling noise intensity through
variance σ2, with σ ≥ 0.03 mimicking real-world conditions [13, 43, 46, 34]. Concurrently, the ACS
fairness dataset, partitioned by state, captures unique demographic landscapes reflecting inherent
feature heterogeneity in socio-economic factors like age, education, race, and occupation, where
average income, education levels, and employment rates vary significantly across states.

Evaluation metrics. Bias mitigation aims to minimize discrepancies (for subgroups) while maintain-
ing competitive utility; in doing so, we assess three key metrics (additional discussion in §F):

Subgroup bias metrics. measure performance discrepancies across subgroups. We compute subgroup
discrepancies {Disch({ag,k}Gg=1)} for each global group g, where ag,k is the model’s performance
on each subgroup. We compare the distribution of these subgroup discrepancies across global groups
using their median M values. Low median values (approaching zero) indicate low subgroup bias.

Group bias metrics. measure performance discrepancies across groups. We compute the discrepancies
{Disch({ag}Gg=1)}Nk=1 across groups for each local dataset Dk, where ag is the model’s performance
on a local group at client k. We compare the distribution of these group discrepancies based on their
median values. Low median values (approaching zero) indicate low group bias and vice versa.

Utility metrics. measure overall model performance across clients. Utility is assessed using the
average accuracy across all clients.
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Figure 2: (left) Variation in TPR among subgroups, (right) average model utility across clients.

3.3 nonIID Study: Results Overview
This section addresses the impact of data heterogeneity on subgroup fairness across clients in FL. We
summarize our findings based on the subgroup bias, group bias, and utility metrics in Figure 2.

Observation: TPR of the global model varies across subgroups due to feature distribution hetero-
geneity, resulting in subgroup bias, as shown in Figure 2 (left) where all subgroups across all datasets
have subgroup bias metrics with medians M differing from zero. Figure 2 (right) demonstrates
that high model utility still leads to subgroup bias: high average accuracy does not guarantee any
subgroup bias. This trend is evident from simple to complex datasets (MNIST, FMIST, UTK, FER),
illustrating subgroup bias relative to average model performance, with MNIST showing the highest
discrepancy. The theoretical proof of this trend is presented in Equation 11 through Theorem C.1.1,
linking subgroup discrepancies to data heterogeneity across clients, quantified by Γ. MNIST’s
simplicity and sensitivity to feature distribution variations, such as feature noise, likely contribute
to this discrepancy. The data’s low complexity makes it sensitive to minor variations, amplifying
subgroup performance variations. This motivates us to use Lipschitz-based constraints, which show
promise for addressing subgroup bias while preserving model utility. where MNIST’s simplicity and
sensitivity to heterogeneity significantly amplify performance discrepancies across subgroups due to
its low complexity and susceptibility to minor variations.

Takeaway: Non-IID subgroup data across clients leads to subgroup bias. High-utility techniques
may still fall short due to the non-IID nature of subgroups, so addressing this bias is key to improving
the fairness and effectiveness of FL systems.

4 LipFed Optimization Framework
4.1 Overview

In this section, we formalize a global subgroup fairness constraint for training fair FL models on
individually similar subgroups Xg

k and Xg
k′ across different clients k and k′, as shown in Figure 3.

The Lipschitz property defined in §3 enables this constraint. The global subgroup fairness constraint
Cf (θ) over each client’s local empirical risk R(Xk;θk) is defined as:

min
θk←θ

R(Xk,θk) s.t ∀Xg
k ,X

g
k′ ∈ G : Cf (θ) = D(hθ(X

g
k ), hθ(X

g
k′)) = ∥hθ(X

g
k )−hθ(X

g
k′)∥ ≤ d(Xg

k ,X
g
k′)

(4)

Challenges. Directly using the Lipschitz condition in Equation(4) for subgroup fairness in FL poses
two challenges:

• Lack of well-defined similarity metric: No well-defined metric d(·) exists to to assess the similarity
between decentralized subgroups Xg

k and Xg
k′ .

• Decentralized subgroups: Unlike centralized machine learning, subgroups Xg
k and Xg

k′ are spread
across clients in FL, making it difficult to assess and impose the Lipschitz condition without
breaking FL privacy.

To solve these challenges, using the subgroup notion that denotes a small set Xg
k with samples that

belong to a group g ∈ G, we first use a subgroup similarity metric reflecting the best available
approximation for assessing similarity between subgroups. This approximation relies on the intuition
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Figure 3: Schematic of our proposed subgroup bias mitigation approach LipFed. Xg
k is the subgroup data and

ωk are the local model parameters for client k. R(Xg
k ,ωk) and R(X,ωk) measure the subgroup and overall

data risks, respectively. The numbered circle indicates sequential FL steps.

Importance weights wg,k based on subgroup variance play a pivotal role in LipFed by reflecting each
client’s contribution to the global model’s performance, where higher weights signify greater importance.
This insight prompts us to compute importance weights in LipFed that inversely correlate with subgroup
variance, ensuring that subgroups with high variance are assigned lower importance in the FL process. We
calculate these weights inversely to subgroup variance to ensure subgroups with higher variance in their
features (which is known to degrade performance Khani & Liang (2020)) are assigned lesser importance,
with weights computed as wg,k = 1

AVg,k
, where AVg,k represents the average feature variance within each

subgroup. This approach ensures that subgroups with lower variance receive higher importance weights, thus
contributing more effectively to the global model’s performance. The detailed formulation is in §B.5.

Unconstrained problem. Using the log barrier, we reformulate Equation 6 as an unconstrained problem,
which is smooth and differentiable.

min
ωk→↑ω

R(Xk,ωk) → 1

t
log(→(Cf (ω) → ω)) ↑ min

ωk→↑ω
R(Xk,ωk) → 1

t
log(→g(Xg;ω)) (7)

where g(Xg;ω) = Cf (ω) → ω. This problem minimizes subgroup performance discrepancies across nonIID
subgroups while not substantially degrading group fairness by adding a logarithmic barrier to the original
objective function. The barrier penalizes constraint violations, creating a "barrier" that prevents the optimizer
from straying into infeasible regions of the solution space.

Computing Optimal t. We use a logarithmic barrier in Equation 7 to achieve subgroup fairness without
degrading group fairness significantly. The parameter t controls the barrier’s strength; as t increases, the
barrier weakens, allowing exploration near the feasible region’s boundary. For LipFed, we initialize t at 5 and
increase it by µ = 1.1 after each round, following the setup in Kervadec et al. (2019). This strategy relaxes
constraints early on to focus on data learning, gradually tightening them as optimization progresses.
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Figure 3: Schematic of our proposed subgroup bias mitigation approach LipFed. Xg
k is the subgroup

data and θk are the local model parameters for client k. R(Xg
k ,θk) and R(X,θk) measure the

subgroup and overall data risks, respectively. The numbered circle indicates sequential FL steps.

that subgroups from an individual group have similar characteristics, causing the distance in the
similarity metric to be smaller, say ϵ. Computing the subgroup distance across many pairwise
subgroup outcomes D(hθ(X

g
k ), hθ(X

g
k′)) = ∥hθ(X

g
k ) − hθ(X

g
k′)∥ at client k hosting the local

subgroup Xg
k poses computation and privacy issues, as there’s a lack of global information about

decentralized subgroups Xg
k′ residing on other clients k′. To counter that, we compute the subgroup

distance across each subgroup outcome and the weighted aggregation of decentralized subgroup
outcomes from other clients’ k′ as:

D(hθ(X
g
k ;θ), hθ(X

g
k ;θ) = ∥R(Xg

k ;θ)−R(Xg
k′ ;θ)∥ ≈ ∥R(Xg

k ;θ)−
∑
k′

wg,k′R(Xg
k′ ;θ)∥ (5)

where wg,k′ denotes the relative importance of loss weight for client k′ in the aggregation. The
expression ∥·∥ quantifies the total discrepancy or distance between the loss performances of the
global model on client k’s subgroup and the weighted subgroup losses across other clients k′. A
small discrepancy value indicates that the model’s subgroup performance aligns well with all clients’
collective performance without bias.

min
θk←θ

1

K

K∑
k=1

R(Xk,θk) s.t ∀Xg
k ,X

g
ki ∈ G : Cf (θ) =

ng∑
g=1

∥R(Xg
k ;θ)−

∑
k′

wg,k′R(Xg

k′ ;θ)∥ ≤ ϵ

(6)

The subgroup fairness constraint Cf of the optimization problem given by 6 ensures that the difference
between the loss of a subgroup on client k and the aggregated losses of the same subgroup across
other clients k

′
is small (relative to the upper bound of a slight difference in similar subgroups ϵ),

weighted by wg,k.

Importance weights wg,k based on subgroup variance play a pivotal role in LipFed by reflecting
each client’s contribution to the global model’s performance, where higher weights signify greater
importance. This insight prompts us to compute importance weights in LipFed that inversely correlate
with subgroup variance, ensuring that subgroups with high variance are assigned lower importance in
the FL process. We calculate these weights inversely to subgroup variance to ensure subgroups with
higher variance in their features (which is known to degrade performance [24]) are assigned lesser
importance, with weights computed as wg,k = 1

AVg,k
, where AVg,k represents the average feature

variance within each subgroup. This approach ensures that subgroups with lower variance receive
higher importance weights, thus contributing more effectively to the global model’s performance.
The detailed formulation is in §B.5.
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Unconstrained problem. Using the log barrier, we reformulate Equation 6 as an unconstrained
problem, which is smooth and differentiable.

min
θk←−θ

R(Xk,θk)−
1

t
log(−(Cf (θ)− ϵ)) ≡ min

θk←−θ
R(Xk,θk)−

1

t
log(−g(Xg;θ)) (7)

where g(Xg;θ) = Cf (θ)− ϵ. This problem minimizes subgroup performance discrepancies across
nonIID subgroups while not substantially degrading group fairness by adding a logarithmic barrier to
the original objective function. The barrier penalizes constraint violations, creating a "barrier" that
prevents the optimizer from straying into infeasible regions of the solution space.

Computing Optimal t. We use a logarithmic barrier in Equation 7 to achieve subgroup fairness
without degrading group fairness significantly. The parameter t controls the barrier’s strength; as
t increases, the barrier weakens, allowing exploration near the feasible region’s boundary. For
LipFed, we initialize t at 5 and increase it by µ = 1.1 after each round, following the setup in [23].
This strategy relaxes constraints early on to focus on data learning, gradually tightening them as
optimization progresses.

4.2 Theoretical Analysis
This section presents a theoretical analysis of subgroup and group fairness in ML models. Theorems
here (proofs provided in §C) establish upper bounds for LipFed optimization and explore trade-offs
between Lipschitz continuity, empirical risk, and fairness constraints. These theorems provide insights
into the relationships between model properties, fairness constraints, and empirical risk outcomes.

Theorem 4.2.1. Subgroup fairness upper bound. Under Assumption 1 in §C.1.1 for any subgroups
Xg

k and Xg
k′ at clients k and k′, we have:

Disch(X
g
k ,X

g
k′) ≤ ϵ2 · Γ ∀g ∈ G; k, k′ ∈ K : k ̸= k′; ϵ > 0 (8)

where Γ = R(·;θ)∗−∑K
k=1 pkRk(·;θk)∗ quantifies the degree of data heterogeneity; if the data are

non-iid, then Γ is nonzero and its magnitude reflects the heterogeneity of the data distribution [32].
pk is the weight of the k-th device such that pk is proportional the device’s local data size and pk ≥ 0.

Theorem 4.2.2. Group fairness upper bound. Under Assumption 1-5 in §C.1.2 on the global
empirical risk function R(X;θ) as per recent FL works [31, 32], we have:

Disch(X
g
k ,X

g′

k ) ≤ κ

γ + Γ− 1
·
(
2B

µ
+ ϵ2 · Γ

)
∀g, g′ ∈ G; g ̸= g′ (9)

where Γ is as defined above, κ = L
µ , B =

∑K
k=1 p

2
kσ

2
k + 6LΓ + 8(E − 1)2G2, E is the number of

local training rounds/epochs for each device k, and γ = max{8κ,E}.

4.2.1 Understanding the Relationship between Subgroup and Group Bias Mitigation
To understand the unexplored interplay between subgroup and group fairness, we examine how
changing the common bounds parameter ϵ affects both subgroup and group fairness. We clarify the
distinction between subgroup and group fairness interpretations in centralized versus decentralized
settings in §B.

The interplay between subgroup and group fairness is critical for achieving equitable outcomes across
both demographic groups and subgroups. Subgroup fairness aims to ensure fair treatment by reducing
the parameter ϵ, which in turn minimizes ϵ2 · Γ, as detailed in Theorem 4.2.1. While lowering ϵ
enhances subgroup fairness, it can have mixed effects on group fairness. Group fairness, on the
other hand, is governed by the bounds in Theorem 4.2.2, which include terms such as κ

γ+Γ−1 and
2B
µ . However, reducing ϵ may initially lower the group fairness bound through the term ϵ2 · Γ, larger

values of κ, B, or γ may overshadow these benefits, highlighting the need for careful calibration of ϵ
to balance both dimensions of fairness effectively.

5 Experiments
In this section, we evaluate LipFed’s effectiveness in mitigating subgroup bias to assess whether
LipFed achieves subgroup fairness across diverse clients while adhering to three key constraints: (1)
maintaining group fairness; (2) preserving model utility and (3) data privacy.
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Figure 4: Demonstrating subgroup bias in model performance for different datasets and baselines.
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Figure 5: Demonstrating model utility vs. discrepancy for different datasets and baselines.

5.1 Experimental Setup

Models and datasets. Our study assesses LipFed’s efficacy using the setup in §3.2. We compare
LipFed with SOTA baselines on benchmark datasets and evaluate its real-world applicability using
the UTK dataset and ACS fairness dataset, examining bias mitigation across different client partitions
in FL.

Baselines. We evaluate LipFed across two key categories, scrutinizing bias reduction, model utility,
privacy and group fairness tradeoff. 1) The FL baseline category represented by FedAvg, serves as the
standard learning scheme in FL. 2) The FL bias-reduction category includes AFL[36], TERM[30],
and GIFAIR-FL [55], which use empirical risk reweighting to mitigate bias and adapt the global
model to diverse local data distributions (Note: We use client and group bias baselines, as to the
best of our knowledge, no existing techniques are specifically designed to address subgroup bias.
We provide additional evaluation of FL robustness techniques that are not specifically focused on
fairness in §G.1 ).

5.2 Comparative Evaluation of LipFed on Benchmark and Real-World Datasets

We use six datasets to compare LipFed with bias mitigation baselines in achieving subgroup fair-
ness. In the MNIST and Fashion-MNIST datasets, LipFed significantly outperforms the baselines
in reducing subgroup bias, as illustrated in Figure 4a. This improvement is largely due to LipFed’s
use of Lipschitz continuity constraints, which directly address discrepancies in subgroup perfor-
mance. In contrast, existing fairness techniques focus primarily on group fairness, which does not
inherently guarantee subgroup fairness. However, LipFed occasionally exhibits higher median group
discrepancies ( Figure 4b), indicating that improving subgroup fairness does not always translate
into improved group fairness, a point further explored in the theoretical analysis §4.2. Neverthe-
less, LipFed maintains competitive model utility compared to baseline methods not only at the
subgroup level ( Figure 5a) but also at the group level ( Figure 5b). The trends are consistent in
real-world datasets (FER2013, UTK, ACSI, and ACSE) with those observed in the benchmark
datasets, validating LipFed’s ability to balance subgroup fairness and utility in practical, non-IID FL.
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Figure 6: Enhancing fairness across other FL algorithms: LipFed Elevates traditional FL algorithms
in subgroup bias mitigation across datasets.

Takeaway: LipFed mitigates subgroup bias for non-IID subgroups across clients and maintains
competitive utility compared to baselines without compromising performance on all six datasets.

5.3 Impact of LipFed Integration with Traditional FL Methods on Subgroup Fairness

We evaluate the impact of combining LipFed with other FL algorithms, such as AFL and TERM,
to reduce subgroup bias. Our goal is to determine whether LipFed can address subgroup fairness
beyond the FedAvg technique, particularly in scenarios with feature heterogeneity. By integrating
LipFed with AFL and TERM, resulting in AFL+LipFed and TERM+LipFed, we aim to ensure
consistent model performance across clients. Using the same datasets and metrics, we find that both
AFL+LipFed and TERM+LipFed consistently demonstrate lower median subgroup discrepancies
compared to AFL and TERM alone ( Figure 6). This improvement is driven by LipFed’s enforcement
of Lipschitz continuity constraints, which specifically target and penalize subgroup performance
discrepancies. In contrast, most fairness techniques focus primarily on group fairness, which is
insufficient to fully address subgroup fairness challenges.

Takeaway. LipFed enhances effectiveness of other group fairness methods in FL, in reducing subgroup
bias.

5.4 Trade-off Between Subgroup and Group Fairness

Figure 7 illustrates the empirical trade-off between subgroup and group fairness, complementing the
theoretical analysis discussed earlier. The red lines indicate trends in various algorithms’ ability to
mitigate subgroup and group bias. A negative slope highlights the trade-off, where improving one type
of fairness often compromises the other. LipFed, shown at the leftmost marker, effectively enhances
subgroup fairness but slightly compromises group fairness due to the challenge of balancing these
trade-offs during optimization. The mixed trends observed can be attributed to Dataset characteristics
and feature distribution as they influence this trade-off. For instance, MNIST’s uniform feature
distribution helps align subgroup and group fairness, whereas FMNIST’s variability in textures and
styles causes a divergence between the two. Our results show that bias mitigation techniques exhibit
varying trends depending on factors like data heterogeneity and training parameters (e.g., ϵ). Careful
parameter tuning is key to balancing subgroup and group fairness, with dataset complexity playing a
major role in their alignment or divergence across clients.

Takeaway: Balancing subgroup and group fairness requires trade-offs and careful parameter tuning.

5.5 Privacy Preservation and Its Impact on Fairness and Utility

To assess the impact of differential privacy on subgroup fairness and model performance, we introduce
varying levels of Laplace noise, with ϵ ∈ {0.8, 1.0, 1.4}, to the local subgroup losses exchanged
between clients and the server. This technique ensures that sensitive client metadata remains protected
while allowing for calculating fairness constraints. The ϵ values range aligns with standard privacy-
preserving practices in FL [1].

We evaluate the impact of different privacy levels on subgroup discrepancy and model accuracy for
benchmark datasets. As shown inTable 1, differential privacy has minimal effect on subgroup fairness
and utility. For instance, at ϵ = 0.8, MNIST shows a discrepancy of 0.25 and 87.11% accuracy, while
Fashion-MNIST shows a 0.1 discrepancy and 74.5% accuracy. These results remain consistent across
varying privacy levels and without privacy (no-DP), indicating that privacy does not significantly
degrade fairness or performance.
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Figure 7: Group Fairness vs. Subgroup Fairness on different baselines and datasets.
r

Table 1: Impact of differential privacy levels on subgroup fairness and model utility.

ϵ
MNIST Fashion-MNIST

Sub. Disc. Avg. Acc. Sub. Disc. Avg. Acc.

0.8 0.25 87.11% 0.1 74.54%
1.0 0.24 87.11% 0.1 74.54%
1.4 0.24 87.12% 0.09 74.54%
no-DP 0.24 87.13% 0.09 74.55%

LipFed’s inherent Lipschitz continuity and subgroup similarity provide natural privacy protection
by reducing sensitivity to individual data points, without needing explicit noise addition. The
mathematical framework in §C.4 can be used to argue that our technique naturally satisfies differential
privacy criteria, meaning the technique limits information leakage about individual data points in the
dataset to the extent that no single data point significantly alters the statistical characteristics of the
output, thereby offering privacy protection as an inherent feature.

Takeaway. LipFed effectively preserves sensitive client information through differential privacy while
having only a negligible impact (0.01%) on model accuracy and maintaining stable subgroup fairness.

6 Conclusion
The heterogeneity of statistical features in local data across clients in FL models leads to subgroup
bias. To address this, we introduce LipFed, a framework leveraging the Lipschitz fairness constraint.
LipFed ensures that similar subgroups have performance outcomes with a statistical distance within
their similarity measure, improving subgroup fairness without significantly sacrificing utility, as
delineated by our theoretical analysis, which shows a trade-off in group fairness. Our extensive
experiments validate LipFed’s efficacy in subgroup bias mitigation, demonstrating its superiority over
six state-of-the-art bias mitigation techniques and enhancing the fairness of traditional FL methods.
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Appendix
We provide additional information for our paper, LipFed: Mitigating Subgroup Bias in Federated
Learning with Lipschitz Constraints, in the following order:

• Limitations and Future Work (Appendix A)
• Terminology/Techniques (Appendix B)
• Additional Analysis (Appendix C)
• Experimental Setup (Appendix E)
• Metrics (Appendix F)
• Additional Results (Appendix G

A Limitations and Future Work

A.1 Limitations

Despite the effectiveness of the LipFed framework in mitigating subgroup bias, several limitations
remain. Firstly, the reliance on the Lipschitz property to ensure subgroup fairness introduces
constraints that may not universally apply across all types of models or datasets. There is a possibility
that different models exhibit varying degrees of sensitivity to Lipschitz constraints, which could
lead to inconsistent results when applied to non-IID data distributions. Second, the effectiveness of
our method is influenced by the proper selection of the hyperparameter ϵ that governs the Lipschitz
constraint. Finding the optimal balance between subgroup and group fairness may require extensive
tuning and could differ based on the specific characteristics of the datasets being used.

Furthermore, while our approach shows improvements over existing methods, the trade-off between
subgroup and group fairness necessitates careful calibration, which may not be straightforward.
As subgroup variance decreases, the potential for bias to still emerge in certain groups remains a
challenge. Lastly, the additional computational overhead of enforcing Lipschitz constraints during
the optimization process may not be feasible for all practical applications, especially in resource-
constrained environments.

A.2 Future Work

Further empirical studies are needed to evaluate the performance of LipFed in diverse real-world sce-
narios, including applications beyond image classification, such as text and audio data. Investigating
the scalability of our method in federated learning environments with a large number of clients and
significantly diverse data distributions would also be beneficial.

Moreover, it would be valuable to explore dynamic tuning mechanisms for the hyperparameter ϵ,
potentially through adaptive methods that can adjust to the evolving characteristics of the data during
the training process. This would facilitate achieving a more nuanced balance between subgroup and
group fairness.

B Terminology/Techniques

B.1 Novelty of Lipschitz Constraints

While Lipschitz continuity itself is not a novel concept, our work introduces one of the first adaptations
of Lipschitz constraints in FL to specifically address subgroup fairness. LipFed leverages these
constraints to calculate the importance of each subgroup on a client, enabling the model to assign
different weights to subgroups based on the variability in their data. This approach helps mitigate the
effects of non-IID data by prioritizing subgroups that experience greater bias.

What sets LipFed apart is its ability to enforce Lipschitz constraints without requiring access to
clients’ raw data, preserving privacy—a crucial aspect in federated settings. By focusing on the
balance between subgroup fairness and data privacy, LipFed offers an innovative solution to address
fairness in FL systems without compromising privacy.
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B.2 Federated Learning Subgroup Fairness vs. Centralized Learning Subgroup Fairness

Subgroup fairness in FL differs significantly from centralized learning. In centralized learning, all
data is aggregated in one location, making it easier to apply fairness constraints uniformly across
subgroups. However, FL operates on decentralized data distributed across multiple clients, where
non-IID data distributions pose significant challenges. Achieving subgroup fairness in FL requires
ensuring that each client contributes equitably to the global model despite these variations. This
decentralized setup demands sophisticated model aggregation techniques to maintain subgroup
fairness, as direct access to all client data is not possible.

B.3 Subgroup Fairness vs. Fairness across multiple sensitive attributes

Fairness across multiple sensitive attributes, discussed in MultiFair[49], ensures that fairness con-
straints are satisfied for each sensitive attribute individually (regardless of their number) without
necessarily focusing on their intersections. Consider a loan approval algorithm that aims to ensure
fairness. The algorithm might be designed to approve loans at the same rate for men and women
(gender fairness) and at the same rate for people of different ages (age fairness). Each attribute
(gender, age) is treated separately to ensure fairness, but the algorithm might not specifically check
if it’s fair to, for instance, young women or older men. Subgroup fairness (intersectional attributes
focus) and multiple sensitive attributes (individual attribute focus) have some overlap, but they are
not closely related. The distinction between these approaches is well-recognized in the literature [22].
In centralized learning, there is a clear separation between ensuring fairness for individual attributes
and addressing fairness at the intersection of multiple attributes (subgroup fairness). As noted in the
paper [22], the need to ensure fairness across intersectional subgroups is paramount to avoid fairness
gerrymandering, where a model appears fair across individual attributes but fails at the intersection of
these attributes.

B.4 Additional Causes for Subgroup Fairness

Several factors contribute to subgroup unfairness, one of the most prominent being differences in
group sizes. This issue is commonly referred to as label distribution skew, where imbalances in the
distribution of labels across groups lead to biased outcomes. This challenge has been extensively
studied in recent federated learning fairness research [54, 22].

In contrast, our work Lipfed deliberately focuses on a less explored yet equally important issue:
the same label, different features phenomenon. This refers to instances where subgroups that share
the same label exhibit significantly different feature distributions, leading to unfair treatment across
those subgroups. By addressing this underexamined factor, our work provides new insights into the
complexities of achieving subgroup fairness in FL.

B.5 Average Variance of Image Pixel Weighting Scheme

Pixel-level variance reflects differences in texture, lighting, and other visual features that affect image
data similarity and heterogeneity [56]. By computing subgroup importance weights based on the
average variance of image pixels, subgroups with higher pixel variance, indicating less robustness,
are prioritized during training to improve model performance [52]. In [24], the authors present a
mathematical framework showing how feature variance, such as image pixel variance, influences
fairness by affecting loss discrepancy. Here are the relevant equations and their implications in
scenarios of binary groups (0 and 1, say):

Disc ∝
∣∣(Λβ)⊤∆Σz(Λβ)− (P [g = 1]− P [g = 0])((Λβ)⊤∆µz)

2
∣∣ (10)

where Λ = (Σz +Σu)
−1Σu is a matrix that balances the variance of the latent features (Σz) with the

variance of noise in those features (Σu), ensuring that features with lower noise are weighted more
heavily.

The terms ∆Σz = V ar[z | g = 1] − V ar[z | g = 0] and ∆µz = E[z | g = 1] − E[z | g = 0]
represent the difference in the variance and the mean of the latent features between the two groups,
g = 1 and g = 0, respectively. Larger differences in these values signify a greater potential for bias,
as one group’s feature distribution deviates significantly from the other’s. The proportions P [g = 1]
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and P [g = 0] reflect the relative sizes of the two groups, which influence how much weight the
second term in the equation has on the overall discrepancy.

The model’s learned parameters, β, determine the importance of each latent feature in the prediction
process. The interaction between the feature variances and the model parameters, captured by the
term (Λβ)⊤∆Σz(Λβ), increases as feature variance (Σz) increases, indicating that higher variance
in features leads to a larger loss discrepancy between groups.

Building on previous studies, we assign higher importance to subgroups with higher variance,
which indicates potential model bias. This method aligns with other techniques that prioritize
training samples based on characteristics like gradient norm, assessing robustness through feature
heterogeneity. This loss discrepancy directly contributes to model bias, as it suggests unequal
treatment of different groups. Our weighting scheme aims to mitigate this bias by assigning higher
importance to subgroups with greater variance. We compare our fairness weighting scheme with
GIFAIR-FL, a framework for fairness in FL[54]. GIFAIR-FL uses regularization to penalize variations
in client group losses, adapting to statistical differences at each communication round. This approach
aligns with our fairness definitions by ensuring equitable performance across data groups.

C Additional Analysis

C.1 Theoretical Analysis

This section presents a theoretical analysis of subgroup and group fairness in machine learning
models. The theorems discussed here aim to establish upper bounds and explore trade-offs between
Lipschitz continuity, empirical risk, and fairness constraints. Theorem 3.4.1 addresses the upper
bound for subgroup fairness under Lipschitz continuity conditions, providing insights into the
absolute difference in empirical risk between subgroups. Moving forward, Theorem 3.4.2 extends
this analysis to group fairness, establishing upper bounds based on smoothness properties. Finally,
Theorem 3.4.3 delves into the trade-off analysis between Lipschitz constraints and empirical risk
performance, shedding light on how tighter fairness constraints can impact model adaptability and the
overall expected discrepancy in empirical risk across different groups. These theorems collectively
contribute to understanding the intricate relationship between model properties, fairness constraints,
and empirical risk outcomes.
Theorem C.1.1. Subgroup Fairness Upper Bound. Assumption 1. R(·;θ) is (D, d)-Lipschitz
continuous (since it was enforced during optimization).

Then, for any subgroups Xg
k and Xg

k′ at clients k and k′ respectively, we have:

Disch(X
g
k ,X

g
k′) ≤ ϵ2 · Γ ∀g ∈ G; k, k′ ∈ K : k ̸= k′; ϵ > 0 (11)

where Γ = R(·;θ)∗ −∑K
k=1 pkRk(·;θk)∗ (R∗ and R∗k are the minimum values of R∗ and R∗k,

respectively) quantifies the degree of data heterogeneity; If the data are non-iid, then Γ is nonzero,
and its magnitude reflects the heterogeneity of the data distribution [32].

Proof: We start with the Lipschitz continuity property for predictions:

D(hθ(X
g
k ;θ), hθ(X

g
k′ ;θ)) ≤ ϵ · d(Xg

k ,X
g
k′) ∀g ∈ G; k, k′ ∈ K : k ̸= k′ (12)

This inequality tells us that the distance between predictions made by the model hθ(X
g
k ;θ) and

hθ(X
g
k′ ;θ) is bounded by the Lipschitz constant ϵ times the distance between the subgroups Xg

k and
Xg

k′ .

The absolute difference in the subgroup risk functions due to different predictions can be expressed
as:

|R(Xg
k ;θ)−R(Xg

k′ ;θ)| = |f(hθ(X
g
k ;θ))− f(hθ(X

g
k′ ;θ))| ∀g ∈ G; k, k′ ∈ K : k ̸= k′ (13)

Here, f is a function that maps predictions to risk values.

Now, we substitute the Lipschitz continuity property for predictions into the risk function equation:

|f(hθ(X
g
k ;θ))− f(hθ(X

g
k′ ;θ))| ≤ ϵ ·D(hθ(X

g
k ;θ), hθ(X

g
k′ ;θ)) ∀g ∈ G; k, k′ ∈ K : k ̸= k′

(14)

17



Since we know that D(hθ(X
g
k ;θ), hθ(X

g
k′ ;θ)) is bounded by ϵ · d(Xg

k ,X
g
k′), we can replace it in

the inequality above. This substitution leads to the following inequality:

|f(hθ(X
g
k ;θ))−f(hθ(X

g
k′ ;θ))| ≤ ϵ·(ϵ·d(Xg

k ,X
g
k′)) = ϵ2·d(Xg

k ,X
g
k′) ∀g ∈ G; k, k′ ∈ K : k ̸= k′

(15)

=⇒ max{f(hθ(X
g
k ;θ))− f(hθ(X

g
k′ ;θ))} ≤ ϵ2 · d(Xg

k ,X
g
k′) ∀g ∈ G (16)

=⇒ max{R(Xg
k ;θ)−R(Xg

k′ ;θ)} ≤ ϵ2 · Γ (17)

=⇒ Disch(X
g
k ,X

g
k′) ≤ ϵ2 · Γ (18)

Theorem C.1.2. Group fairness upper bound. Suppose that the following assumptions hold on the
global empirical risk function R(X;θ) according to recent works in FL [31, 32],

Assumption 1. R1, . . . , RK are all L-smooth: for all θ1 and θ2,

Rk(θ1) ≤ Rk(θ2) + (θ1 − θ2)
T∇Rk(θ2) +

L

2
∥θ1 − θ2∥22.

Assumption 2. R1, . . . , RK are all µ-strongly convex: for all θ1 and θ2,

Rk(θ1) ≥ Rk(θ2) + (θ1 − θ2)
T∇Rk(θ2) +

µ

2
∥θ1 − θ2∥22.

Assumption 3. Let ξtk be sampled from the k-th device’s local data uniformly at random. The variance
of stochastic gradients in each device is bounded:

E
[
∥∇Rk(θ

t
k, ξ

t
k)−∇Rk(θ

t
k)∥2

]
≤ σ2

k for k = 1, . . . ,K.

Assumption 4. R(·;θ) is (D, d)-Lipschitz continuous (since it was enforced during optimization).

Assumption 5. The expected squared norm of stochastic gradients is uniformly bounded, i.e.,

E
[
∥∇Rk(θ

t
k, ξ

t
k)∥2

]
≤ G2 for all k = 1, . . . ,K and t = 1, . . . , T − 1.

Then,

Disch(X
g
k ,X

g′

k ) ≤ κ

γ + Γ− 1
·
(
2B

µ
+ ϵ2 · Γ

)
∀g, g′ ∈ G; g ̸= g′ (19)

where Γ = R(·;θ)∗ −∑K
k=1 pkRk(·;θk)∗ (R∗ and R∗k are the minimum values of R∗ and R∗k,

respectively) quantifies the degree of data heterogeneity; If the data are non-iid, then Γ is nonzero,
and its magnitude reflects the heterogeneity of the data distribution, κ = L

µ , B =
∑K

k=1 p
2
kσ

2
k +

6LΓ + 8(E − 1)2G2, E is the number of local training rounds/epochs for each device k, and
γ = max{8κ,E}.

Proof: According to [32], we know that:

E[R(·;θT )]−R(·;θ)∗ ≤ κ

γ + Γ− 1
·
(
2B

µ
+

µγ2

2
Ek∥θ − θ∗k∥2

)
(20)

=⇒ E[R(Xg
k ;θT )]−R(Xg′

k ;θ)∗ ≤ max{E[R(Xg
k ;θT )]−R(Xg′

k ;θ)∗}

≤ κ

γ + Γ− 1
·
(
2B

µ
+

µγ2

2
Ek∥θ − θ∗k∥2

) (21)

But, ∥θ − θ∗∥2 ≈ D(hθ(X
g
k ), hθ(X

g′

k ))
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∴ max{E[R(Xg
k ;θT )]−R(Xg′

k ;θ)∗} ≤ κ

γ + Γ− 1
·
(
2B

µ
+ ϵ ·D(hθ(X

g
k ), hθ(X

g′

k ))

)
; ϵ =

µγ2

2
(22)

=⇒ max{E[R(Xg
k ;θT )]−R(Xg′

k ;θ)∗} ≤ κ

γ + Γ− 1
·
(
2B

µ
+ ϵ · (ϵ · d(Xg

k ,X
g′

k ))

)
(23)

=⇒ max{E[R(Xg
k ;θT )]−R(Xg′

k ;θ)∗} ≤ κ

γ + Γ− 1
·
(
2B

µ
+ ϵ2 · Γ

)
(24)

=⇒ Disch(X
g
k ,X

g′

k ) ≤ κ

γ + Γ− 1
·
(
2B

µ
+ ϵ2 · Γ

)
(25)

C.2 Tradeoff Analysis

To understand the trade-off between subgroup and group fairness, we examine how changing the
common bounds parameter ϵ affects both subgroup and group fairness:

Improving subgroup fairness is essential to ensure equitable outcomes across different demographic
groups. The primary objective in this context is to decrease ϵ to reduce the term ϵ2 · Γ. This reduction
has a direct effect on subgroup fairness by minimizing subgroup discrepancies, as indicated by the
relationship in Theorem C.1.1. Regarding group fairness, the decrease in ϵ2 ·Γ contributes to lowering
the group fairness bound. However, the overall impact on group fairness is also dependant upon other
factors, such as the terms κ

γ+Γ−1 and 2B
µ . When 2B

µ is substantially large, it might overshadow the
benefits gained from reducing ϵ, as this term can dominate the fairness bound.

In improving group fairness, it is crucial to consider the influence of all terms within the group
fairness bounds. The group fairness bound is affected by the bound in Theorem C.1.2. Large values of
κ, B, or γ can significantly impact this bound. Furthermore, adjustments aimed at improving group
fairness can have implications for subgroup fairness. Specifically, increasing ϵ might be necessary
to prevent an excessive rise in the group fairness bound. However, this increment will directly raise
ϵ2 · Γ, resulting in a higher discrepancy among subgroups. Balancing these factors is crucial for
achieving both group and subgroup fairness effectively.

C.3 Balancing the Trade-off

To balance subgroup and group fairness, we need to carefully tune ϵ while considering the impact of
the other parameters. Decreasing ϵ can lead to improvements in subgroup fairness, as indicated by
the reduction in ϵ2 · Γ. This directly minimizes subgroup discrepancies. In terms of group fairness, a
decrease in ϵ2 · Γ can also lead to improvements, particularly if this term is significant within the
fairness bound. However, if the term 2B

µ is large, the overall improvement in group fairness may be
limited, as this dominant term can overshadow the effects of reducing ϵ.

On the other hand, increasing ϵ can have adverse effects on subgroup fairness since ϵ2 ·Γ will increase,
leading to greater subgroup discrepancies. In terms of group fairness, an increase in ϵ can potentially
yield improvements if the other terms, such as κ

γ+Γ−1 and 2B
µ , dominate the fairness bound. However,

this benefit is constrained if ϵ2 · Γ is already a small component within the bound.

Balancing these factors is crucial. It involves a trade-off between minimizing subgroup discrepancies
and optimizing group fairness, considering the relative magnitudes of the different terms in the
fairness bound. Careful tuning of ϵ is essential to achieve a desirable balance that promotes both
subgroup and group fairness.

When the parameters κ, B, or γ are large, the group fairness bound is dominated by κ
γ+Γ−1

(
2B
µ

)
,

making it less sensitive to changes in ϵ. Increasing ϵ to maintain group fairness will significantly
worsen subgroup fairness. Conversely, when the parameters κ, B, or γ are small, the group fairness
bound becomes more sensitive to ϵ. In this scenario, decreasing ϵ to improve subgroup fairness
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will have a noticeable impact on the group fairness bound. This can potentially compromise group
fairness if ϵ becomes too small.

Balancing subgroup and group fairness requires carefully tuning ϵ while considering the impact of
these other parameters. Decreasing ϵ can lead to improvements in subgroup fairness, as indicated by
the reduction in ϵ2 · Γ, which directly minimizes subgroup discrepancies. In terms of group fairness,
a decrease in ϵ2 · Γ can also lead to improvements, particularly if this term is significant within the
fairness bound. However, if the term 2B

µ is large, the overall improvement in group fairness may be
limited, as this dominant term can overshadow the effects of reducing ϵ.

On the other hand, increasing ϵ can have adverse effects on subgroup fairness since ϵ2 ·Γ will increase,
leading to greater subgroup discrepancies. In terms of group fairness, an increase in ϵ can potentially
yield improvements if the other terms, such as κ

γ+Γ−1 and 2B
µ , dominate the fairness bound. However,

this benefit is constrained if ϵ2 · Γ is already a small component within the bound.

Balancing these factors involves a trade-off between minimizing subgroup discrepancies and optimiz-
ing group fairness, considering the relative magnitudes of the different terms in the fairness bound.
Careful tuning of ϵ is essential to achieve a desirable balance that promotes both subgroup and group
fairness.

The trade-off between subgroup and group fairness can be managed by carefully tuning ϵ while
considering the effects of κ, γ, µ, and B. The goal is to find an optimal value of ϵ that minimizes
both subgroup and group discrepancies within acceptable limits. This involves balancing the impact
of these parameters to avoid disproportionately favoring one type of fairness over the other.

C.3.1 Dominance of Term ϵ

When the other parameters (κ, γ, Γ, B, and µ) are fixed without dominance, the primary variable
affecting the fairness bounds is ϵ. In this scenario, if ϵ2 dominates the other terms in the fairness
bounds, then reducing ϵ will have a significant impact on both subgroup and group fairness bounds;
reducing ϵ can simultaneously improve both subgroup fairness and group fairness, as the ϵ2 terms
are reduced in both bounds. Thus, under the assumption that ϵ2 is the dominant term and other
terms are fixed, it is possible for there to be no significant trade-off between subgroup fairness and
group fairness. However, in practical scenarios, the other terms may still exert influence, and
the interdependence between ϵ and the constants (κ, γ, Γ, and β) can lead to a trade-off. While
ϵ2 may play a crucial role, the practical interactions of all parameters need consideration to fully
understand fairness dynamics. In these specific conditions the trade-off between subgroup and group
fairness might be minimized or even eliminated. By highlighting these scenarios, we aim to provide a
more comprehensive understanding of how the dominance of ϵ2 can significantly influence fairness
outcomes, thereby offering practical guidance for optimizing fairness in FL models.

C.4 Privacy Analysis

In this section, we present a detailed mathematical analysis of how differential privacy (DP) is applied
in LipFed to protect subgroup losses and fairness constraints while maintaining model utility. The
goal is to ensure that sensitive data remains private without compromising the ability to mitigate
subgroup bias.

C.4.1 Differential Privacy in LipFed

Differential privacy ensures that the inclusion or exclusion of a single data point (or client) does
not significantly affect the outcome of the computation, thereby protecting sensitive data. LipFed
integrates DP by adding Laplace noise to the local subgroup losses, ensuring privacy in the exchange
of fairness-related metrics between clients and the server.

Definition of Differential Privacy. A randomized algorithm A satisfies ϵ-differential privacy if, for
any two adjacent datasets D and D′ (differing by only one data point), and for any set S of possible
outputs:

P (A(D) ∈ S) ≤ eϵ · P (A(D′) ∈ S)

where ϵ is the privacy budget, controlling the amount of noise added and the trade-off between privacy
and accuracy.
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C.4.2 Applying Differential Privacy to Subgroup Losses

In LipFed, we introduce Laplace noise to the local subgroup losses to maintain privacy. The
randomized mechanism for applying DP to subgroup losses is defined as:

A(D) = R̂(Xg; θ) + Laplace
(
∆R

ϵ

)
(26)

where R̂(Xg; θ) is the true risk or loss function for subgroup Xg; ∆R is the sensitivity of the loss
function, measuring the maximum change in output by modifying a single client’s data; ϵ is the
privacy budget controlling the amount of noise added.

C.4.3 Sensitivity of Subgroup Losses

The sensitivity ∆R of the loss function is the maximum possible difference in the loss function due
to the change in one client’s data. If R(Xg; θ) represents the loss for subgroup Xg , then:

∆R = max
D,D′

|R(D; θ)−R(D′; θ)| (27)

where D and D′ are neighboring datasets differing by only one data point.

C.4.4 Noise Addition and Privacy Guarantee

For each subgroup, we add Laplace noise Laplace
(
∆R
ϵ

)
to ensure that the differences in the subgroup

losses remain indistinguishable. The magnitude of the noise is proportional to the sensitivity ∆R and
inversely proportional to ϵ, where larger ϵ implies less noise and weaker privacy guarantees.

This ensures that the exchange of sensitive subgroup performance information between the server
and clients is protected by differential privacy.

C.4.5 Impact on Fairness and Utility

The introduction of DP in LipFed does not significantly degrade fairness or model utility, as seen in
the experimental results. For instance, different privacy budgets ϵ ∈ {0.8, 1.0, 1.4} only minimally
affect subgroup fairness and overall accuracy.

Theoretical Privacy Bound. LipFed ensures that the discrepancy between the loss values of
similar subgroups is bounded by ϵ-differential privacy. Given the Lipschitz continuity constraint
D(hθ(X), hθ(X

′)) ≤ ϵ · d(X,X ′), we enforce that:

|R(Xg; θ)−R(X ′g; θ)| ≤ ϵ2 · Γ (28)

where Γ measures the heterogeneity in data distribution across clients. This bound ensures that
subgroup discrepancies remain within the privacy budget while preserving fairness.

D More Related Work

FL algorithms aimed at achieving a globally fair model are typically classified into three distinct cate-
gories, including client-fairness[31, 36, 6, 30, 20, 16], group-fairness[55, 5, 38, 45], and robustness
techniques [29, 21].

D.1 Client fairness in Federated Learning

Ensuring fairness among clients in FL is vital to counteract biases from non-IID data distributions
across devices. Techniques like the Federated Fair Averaging (FedFV)[51] adjust gradient directions
and magnitudes to balance model average performance based on each client’s conflict level and
contribution[38]. GIFair-FL [55] dynamically adjusts model updates using a fairness-aware aggrega-
tor to reduce average loss across clients, while FjORD [16] employs ordered dropout to tailor model
sizes to clients’ device capacities, enhancing fairness and accuracy.

Additional approaches that build upon these fairness-enhancing techniques include Agnostic Feder-
ated Learning (AFL)[36], which optimizes the global model against any potential target distribution
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by accommodating unknown distribution mixes among clients. q-FFL[31] addresses data heterogene-
ity by reweighting losses to prioritize devices with poorer performance, promoting uniform model
accuracy across devices. Tilted empirical risk minimization (TERM) [30] adjusts the influence of
outliers and balances class representation through a flexible tilt hyperparameter. These methods
enhance average performance in FL systems operating in heterogeneous environments.

D.2 Group Fairness in Federated Learning

Recent advancements in FL have highlighted the importance of addressing fairness concerns, par-
ticularly group fairness, where biases against protected demographic groups are mitigated. [11]
introduced FairFed, a strategy that ensures fair model training by employing a fairness-aware aggre-
gation method. In FairFed, each client performs local debiasing using their own dataset to maintain
decentralization and privacy. Clients evaluate the global model’s fairness in each FL round, and ag-
gregation weights are adjusted in collaboration with the server based on the mismatch between global
and local fairness metrics. This method, supported by secure aggregation protocols, enhances group
fairness under heterogeneous data conditions and allows for client-specific debiasing techniques,
showing significant improvement over traditional fairness approaches in FL settings. FairFed’s
empirical validation confirms its effectiveness in achieving group fairness, with plans for future
enhancements to accommodate various application scenarios and integrate broader fairness concepts,
such as collaborative and client-based fairness.

In a parallel effort, [38] explore group fairness in FL through their FedMinMax algorithm, which is
crafted to establish minimax fairness across demographic groups, an approach that differs from
traditional methods aimed at equalizing performance across clients. FedMinMax strategically
employs alternating optimization techniques—projected gradient ascent for optimizing weights
and stochastic gradient descent for the model—tailoring the learning process to balance fairness
among demographic groups effectively. This method has demonstrated competitive or superior
performance against established benchmarks in various FL setups, showcasing its capability to uphold
group fairness robustly. Simultaneously, [5] propose the FCFL framework, which addresses both
algorithmic fairness and performance consistency across distributed data sources in FL. Derived from
a constrained multi-objective optimization perspective, FCFL aims to maximize the utility of the least
advantaged client while meeting fairness constraints, achieving Pareto optimality via gradient-based
methods. Theoretical and empirical validations of FCFL underscore its ability to outperform existing
models in ensuring fairness and consistent performance across clients, making it a viable solution for
real-world applications where these attributes are crucial. These developments collectively signal a
shift towards more ethical and equitable federated learning environments, emphasizing the necessity
for continuous innovation in fairness-oriented methodologies within the field.

D.3 Robustness in Federated Learning

The paper [28] addresses the challenge of data heterogeneity and forgetting in federated learning
(FL), where a global model is collaboratively learned without direct access to clients’ data. Drawing
an analogy to continual learning, the study proposes that forgetting could hinder FL’s convergence.
They observe that the global model forgets knowledge from previous rounds, and local training
induces forgetting outside the local distribution. The authors hypothesize that addressing forgetting
could alleviate data heterogeneity issues. To tackle this, they propose Federated Not-True Distillation
(FedNTD), a novel algorithm that preserves the global perspective on locally available data only
for the not-true classes. FedNTD effectively mitigates forgetting and demonstrates state-of-the-art
performance in various FL setups. Through empirical analysis, the study confirms that the global
model’s prediction consistency suffers across communication rounds due to forgetting induced by
data heterogeneity. FedNTD addresses this by selectively preserving global knowledge outside local
distributions, offering a promising solution to improve FL performance without compromising data
privacy or incurring additional communication costs.
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Table 2: Partitioning of datasets with added Gaussian noise

Client Samples Noise
STD Test Data Samples Noise

STD Test Data Samples Noise
STD Test Data

MNIST FashionMNIST FER2013
1 6,000 0.4 Original + 0.4 6,000 0.4 Original + 0.4 2870 0.0 Original + 0.0
2 6,000 0.5 Original + 0.5 6,000 0.5 Original + 0.5 2870 0.09 Original + 0.09
3 6,000 0.7 Original + 0.7 6,000 0.7 Original + 0.7 2870 0.18 Original + 0.18
4 6,000 1.0 Original + 1.0 6,000 1.0 Original + 1.0 2870 0.27 Original + 0.27
5 6,000 1.5 Original + 1.5 6,000 1.5 Original + 1.5 2870 0.36 Original + 0.36
6 6,000 0.4 Original + 0.4 6,000 0.4 Original + 0.4 2870 0.0 Original + 0.0
7 6,000 0.5 Original + 0.5 6,000 0.5 Original + 0.5 2870 0.09 Original + 0.09
8 6,000 0.7 Original + 0.7 6,000 0.7 Original + 0.7 2870 0.18 Original + 0.18
9 6,000 1.0 Original + 1.0 6,000 1.0 Original + 1.0 2870 0.27 Original + 0.27

10 6,000 1.5 Original + 1.5 6,000 1.5 Original + 1.5 2870 0.36 Original + 0.36

UTK ACS Income (ASCI) ACS Employment (ASCE)
1 1920 0.0 Original + 0.0 26621 - State test 6656 - State test
2 1920 0.1 Original + 0.1 11143 - State test 2768 - State test
3 1920 0.3 Original + 0.3 156532 - State test 39133 - State test
4 1920 0.5 Original + 0.5 32091 - State test 8023 - State test
5 1920 0.7 Original + 0.7 41653 - State test 10414 - State test
6 1920 0.0 Original + 0.0 108739 - State test 27185 - State test
7 1920 0.1 Original + 0.1 13069 - State test 3268 - State test
8 1920 0.3 Original + 0.3 12645 - State test 3162 - State test
9 1920 0.5 Original + 0.5 17604 - State test 4402 - State test

10 1920 0.7 Original + 0.7 17814 - State test 4454 - State test

E Experimental Setup

E.1 Dataset Details

Choice of Datasets. In our experiments, we evaluated the LipFed framework using four small
datasets, including MNIST, Fashion-MNIST, FER2013, and UTK, and two large scale dataset,
including ASCI and ASCE, with a 10 clients. These datasets were chosen to represent a diverse set of
applications, thereby providing a comprehensive evaluation of the feasibility and initial effectiveness
of the proposed subgroup fairness technique. Each dataset presents unique characteristics and
challenges related to bias studies. The MNIST dataset consists of handwritten digit images. This
dataset is often used as a benchmark for image classification tasks and serves as a starting point for
evaluating model performance on simple, grayscale images. It helps in understanding basic biases
that might arise from digit shapes and writing styles. Fashion-MNIST is a dataset of grayscale images
of clothing items. This dataset is used to test model performance on more complex visual patterns
compared to MNIST. It introduces variability in clothing styles, textures, and shapes, which can help
identify biases related to visual feature extraction and classification. The FER2013 dataset contains
grayscale images of facial expressions. This dataset is crucial for studying biases related to facial
recognition and emotion detection. It includes images with diverse facial expressions and varying
degrees of emotion intensity, which can reveal biases in recognizing and classifying emotional states,
especially across different demographic groups. The UTKFace dataset includes images of faces
with annotations for age, gender, and ethnicity. This dataset is particularly valuable for studying
intersectional biases involving age, gender, and ethnicity. It allows for an in-depth analysis of how
different demographic attributes can impact model performance and fairness, revealing potential
biases in facial recognition systems across diverse population groups. Despite the aforementioned
datasets, we recognize the importance of assessing the model’s scalability and robustness on larger
datasets, we perform further evaluations on large real-world datasets (ACSI and ACSE) which is used
in fairness studies.

Data Partitions. As it is customary to partition benchmark datasets across clients in FL research
[19, 50], we adopt this strategy and distribute samples of an individual group equally across clients
according to the Dirichlet distribution [19]. This distribution is demonstrated in Table 2, where the
third column shows that distributing samples of an individual group equally across clients leads to
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clients with an equal number of samples in their local data Dk. The uniform data partitioning strategy
is motivated by the desire to demonstrate that even in FL settings with balanced groups across clients,
feature noise heterogeneity still leads to subgroup bias across clients.

Heterogeneous Feature Distributions. We introduce feature noise across data partitions to simulate
real-world scenarios where images are non-IID, deviating from the feature distribution of pristine
training images [13, 43, 46]. The noise is added to an image by adding a random value sampled from
a Gaussian distribution to each pixel of the image. Mathematically, this is represented as:

Ĩ(x, y) = I(x, y) + ϵ (29)

where ϵ ∼ N (0, σ2), with Ĩ(x, y) and I(x, y) denoting noisy and original pixel values at (x, y),
respectively. The parameter σ controls the amount of noise added to the image. The larger the value
of σ, the more intense the noise. Specifically, Gaussian noise with σ of 0.03 or higher is incorporated,
reflecting conditions observed in real-world deployments [34]. The noise addition to each client’s
local training dataset Dk is demonstrated in Table 2, where the fourth column shows all local datasets
across different clients have different feature noise distributions. The difference in feature noise
across clients is motivated by the desire to understand how the nonIID-ness in subgroup data of an
individual group affects the global model’s bias across subgroups.

Local Test Data. Each client utilizes a replicated version of the original benchmark test set, aligning
similar noise feature distributions between the training and test data for individual clients. For
example, as depicted in Table 2, client 1 employs the original FMNIST test dataset with noise levels
consistent with those of the training partition. This approach is motivated by the assumption that the
local and training data for each client share similar feature distributions, which may differ from those
of other clients.

E.2 Training Parameters

Table 3 outlines the primary training parameters used across all models and datasets in this work. We
implemented the system using PyTorch [42] on Ubuntu 22.04 (8GB NVIDIA Quadro P2200 GPU). 1

E.3 Adaptation to tabular datasets

Our approach of using the average variance of image pixels is directly applicable to tabular data.
We first present a detailed methodology for adapting LipFed for two tabular datasets from fair ML
Retiring Adult datasets [8], ACSIncome and ACSEmployment:

The steps to compute subgroup weights/moments (e.g., variance) for subgroups are as follows:

1. Data Separation: Divide data into subgroups based on intersecting attributes (e.g., income
>50K and demographic areas).

2. Variance Calculation: Calculate variance (subgroup weight) for each subgroup: σ2
g =

1
Ng

∑Ng

i=1(xi − µg)
2.

Here, Ng is the number of samples in subgroup g, xi are the feature values, µg is the mean of the
feature for subgroup g, and σg is the standard deviation of the feature for subgroup g. Results in
Figure 1 show our approach’s effectiveness in bias mitigation, even for tabular data.

We use the ACS PUMS [8] as the basis for both prediction tasks income and employment:

Example: ACSIncome Prediction. We use ACS PUMS data to gather income-related features,
race, and state information, ensuring each data point includes the state it belongs to. Data is distributed
across clients based on the state attribute (randomly selected USA states), with each client representing
data from a specific state. We define two income groups:

1. Income True: Individuals with income above a certain threshold (e.g., $50,000).

1The ’readme.txt’ file at the root of the project folder consists of the steps required to run the code: Download
Zipped Folder
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Table 3: Model Training Parameters.

Algorithm Dataset
Train time
per round
(minutes)

Model Minibatch
size Momentum Weight

decay
Learning
rate

# Local
epochs # Rounds Loss

function

FedAvg MNIST 2.25 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 2.23 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 8.93 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 4.98 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

AFL MNIST 2.22 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 2.25 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 8.76 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 4.94 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

TERM MNIST 2.27 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 2.28 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 9.15 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 4.99 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

GIFAIR-FL MNIST 2.05 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 1.98 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 8.27 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 4.51 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

FedNTD MNIST 2.53 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 2.57 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 10.23 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 5.62 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

Scaffold MNIST 0.71 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 0.82 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 2.29 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 1.63 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

LipFed MNIST 2.61 LeNet 256 0.9 0.0001 0.01 5 65 Cross entropy
Fashion-MNIST 5.14 VGGNet 256 0.9 0.0005 0.01 5 65 Cross entropy
FER2013 9.94 ResNet-18 128 0.9 0.0005 0.01 5 30 Cross entropy
UTK 5.14 ResNet-18 64 0.9 0.0005 0.01 5 75 Cross entropy
ACSIncome - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy
ACSEmpoyment - Logistic R. 128 - - 0.001 5 10 Binary Cross entropy

2. Income False: Individuals with income below this threshold.

The state serves as an implicit sensitive attribute due to its correlation with demographic distribution,
forming subgroups by income level and demographic region (e.g., Income True and California).

Example: ACSEmployment Prediction. For ACSEmployment, the task is to predict whether an
individual is employed after filtering ACS PUMS data to include individuals between the ages of 16
and 90 [8];. We define two employment groups:

1. Employed: Individuals who are currently employed.

2. Unemployed: Individuals who are not employed.

The steps to compute subgroup weights for this dataset are similar: Divide data into subgroups based
on employment status and demographic attributes (e.g., employed and from California). Compute
variance for each subgroup as described earlier, allowing us to weigh the subgroups’ importance and
enforce subgroup fairness in the optimization problem discussed in Section 4.1 of the paper.

This methodology illustrates the adaptability of the LipFed framework to diverse data types, empha-
sizing its utility in addressing fairness across multiple domains.
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F Metrics

F.1 True Positive Rate (TPR)

The True Positive Rate (TPR) is a critical metric for assessing model performance, as it measures
the proportion of actual positives correctly predicted by the model. Variations in TPR across
subgroups indicate discrepancies in the model’s generalization across different subpopulations.
In FL, TPR variation is often a result of non-IID data across clients. Subgroups with diverse
characteristics—such as demographic differences, sensor quality, or geographical factors—lead to
varied feature distributions, causing differential model performance. Mathematically, TPR is defined
as:

TPRg =
TPg

TPg + FNg
(30)

where TPg and FNg represent the true positives and false negatives for subgroup g, respectively.

F.1.1 Variation in TPR Across Subgroups

The variation in TPR can quantify the performance discrepancies between subgroups. Let the TPR
for each subgroup g be denoted as TPRg. The difference between the highest can measure the
discrepancy in performance among subgroups- and lowest-performing subgroups:

Disc(TPR) = max
g

(TPRg)−min
g

(TPRg) (31)

A large discrepancy suggests that some subgroups benefit more from the model than others, high-
lighting the presence of subgroup bias. In non-IID FL settings, subgroup g on one client may have
very different feature distributions compared to the same subgroup on another client, leading to
inconsistent TPRs across subgroups.

In our LipFed framework, which applies Lipschitz constraints to reduce subgroup bias, the goal is to
minimize the performance discrepancy across subgroups. The performance difference is constrained
by a Lipschitz continuity condition that controls how much the TPR can vary based on subgroup
similarity. This condition ensures that:

D(hθ(x), hθ(x
′)) ≤ ϵ · d(x, x′) (32)

where D(hθ(x), hθ(x
′)) represents the Euclidean distance between the model’s outputs for two

subgroup instances x and x′, and d(x, x′) is a distance metric quantifying the similarity between the
subgroups.

Thus, variations in TPR among subgroups are restricted by the parameter ϵ, which limits the magnitude
of subgroup performance differences:

Disc(TPR) ≤ ϵ (33)

By enforcing these Lipschitz constraints, LipFed reduces the subgroup performance disparity, result-
ing in more equitable TPRs across clients.

F.2 Median/Average Performance Discrepancy

The maximum discrepancy metric focuses on the largest performance gap between subgroups, which
can highlight the worst-case unfairness. We acknowledge that relying solely on the maximum
performance discrepancy among all subgroups may not always provide a complete picture of model
fairness; this approach may unfairly penalize a model that performs exceptionally well for most
subgroups but poorly for one specific subgroup. To provide a more comprehensive evaluation
of model fairness, we used the median/average performance discrepancy across all subgroups to
provide a more balanced view of fairness as reported in §5. Median/average discrepancy provides a
more balanced view of the model’s performance across all subgroups, commonly used in FL group
fairness studies such as [41, 54]. It accounts for the median/average difference between subgroup
performances rather than just focusing on the worst-case scenario. By considering the median/average
performance difference, the sensitivity to outliers that might disproportionately affect the maximum
discrepancy metric is reduced. In summary, the maximum performance discrepancy among all
subgroups may not always provide a complete picture of model fairness.

26



MNIST FMNIST FER2013 UTK
Datasets

0.0

0.2

0.4

0.6

0.8

1.0

Su
bg

ro
up

 D
isc

re
pa

nc
y FedAvg

AFL
TERM

GIFAIR-FL
FedNTD

SCAFFOLD
LipFed

(a) TPR variations among subgroups.
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(b) TPR variations among groups.
Figure 8: Demonstrating subgroup bias in model performance for different datasets and baselines.
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(a) Utility vs. Subgroup fairness.
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(b) Utility vs. Group fairness.
Figure 9: Demonstrating model utility vs. discrepancy for different datasets and baselines.

G Additional Results
G.1 LipFed’s Performance Against Consistency and Robustness Benchmarks

In addition to fairness benchmarks (AFL, TERM, GIFAIR), we compare LipFed, our fairness-focused
technique, against FL algorithms such as Scaffold [21] and FedNDT [29], which prioritize robustness
and consistency over fairness. In the FL heterogeneity category, FedNTD addresses performance
loss due to data heterogeneity by managing global model memory. In the FL robustness category,
SCAFFOLD [21] focuses on enhancing resilience against outliers and noisy data, mitigating the
impact of irregularities in local datasets. Scaffold addresses client drift, while FedNDT targets model
discrepancies due to non-IID data. This evaluation measures LipFed’s performance in reducing
subgroup bias and maintaining model utility compared to these non-fairness benchmarks.

The results indicate that while Scaffold and FedNDT exhibit strong robustness and consistency across
various datasets, LipFed outperforms both in terms of reducing subgroup bias, as shown in Figure 8.
For example, in the MNIST dataset, LipFed achieves a 20% lower subgroup bias than Scaffold,
demonstrating its effectiveness in mitigating bias without sacrificing much performance. Importantly,
although LipFed is designed to mitigate subgroup bias, it also improves group fairness, showing
reductions in group discrepancy similar to those seen in subgroup fairness. This demonstrates that
LipFed’s benefits extend beyond subgroup bias mitigation.
Additionally, in Figure 9, we show that LipFed maintains competitive performance across all datasets,
with trends in utility closely mirroring those of the robustness-focused methods. While Scaffold and
FedNDT slightly outperform LipFed in raw performance metrics, the trade-off is minimal, showcasing
that LipFed effectively balances both fairness and performance across diverse data conditions.

This comparison highlights that while methods like Scaffold and FedNDT excel in providing robust-
ness, LipFed offers a balanced solution by significantly reducing subgroup bias while still maintaining
strong performance across diverse datasets.

G.2 Convergence Analysis

We evaluate the convergence behavior of LipFed in comparison to baseline techniques such as
AFL, TERM, and GIFAIR. The goal is to assess how quickly the training process reduces subgroup
discrepancies across multiple datasets, including MNIST, Fashion-MNIST, FER2013, and UTK.
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(d) UTK

Figure 10: Convergence of the training subgroup discrepancy of LipFed and other baseline techniques
across multiple datasets. LipFed consistently exhibits lower subgroup discrepancy across all iterations.

Convergence here refers to the stability and speed at which the subgroup discrepancy is minimized
during the training process.

As shown in Figure 10, LipFed consistently demonstrates faster convergence and lower subgroup
discrepancy across all datasets. This rapid reduction in subgroup bias is primarily due to the
Lipschitz continuity constraints imposed by LipFed, which ensure that performance differences
between subgroups are bounded early in the training process. In contrast, the baseline techniques
either converge more slowly or stabilize at higher subgroup discrepancy values, highlighting their
inability to efficiently address subgroup fairness in non-IID settings. For example, on the FER2013
dataset, LipFed achieves a 30% reduction in subgroup discrepancy within the first 50 iterations
compared to AFL, which converges much slower. Similarly, on the UTK dataset, LipFed stabilizes
subgroup fairness more effectively than other methods, reaching a lower discrepancy in fewer
iterations. This consistent performance across datasets illustrates LipFed’s efficiency in addressing
fairness concerns in federated learning environments with heterogeneous client data. In summary,
LipFed’s convergence behavior demonstrates its ability to quickly and efficiently reduce subgroup
discrepancies, outperforming other fairness-focused techniques in both speed and effectiveness.

28


	Introduction
	Related Work
	Preliminaries and Problem Formulation
	Preliminaries
	Experimental Setup
	nonIID Study: Results Overview

	LipFed Optimization Framework
	Overview
	Theoretical Analysis
	Understanding the Relationship between Subgroup and Group Bias Mitigation


	Experiments
	Experimental Setup
	Comparative Evaluation of LipFed on Benchmark and Real-World Datasets
	Impact of LipFed Integration with Traditional FL Methods on Subgroup Fairness
	Trade-off Between Subgroup and Group Fairness
	Privacy Preservation and Its Impact on Fairness and Utility

	Conclusion
	Limitations and Future Work
	Limitations
	Future Work

	Terminology/Techniques
	Novelty of Lipschitz Constraints
	Federated Learning Subgroup Fairness vs. Centralized Learning Subgroup Fairness
	Subgroup Fairness vs. Fairness across multiple sensitive attributes
	Additional Causes for Subgroup Fairness
	Average Variance of Image Pixel Weighting Scheme

	Additional Analysis
	Theoretical Analysis
	Tradeoff Analysis
	Balancing the Trade-off
	Dominance of Term  

	Privacy Analysis
	Differential Privacy in LipFed
	Applying Differential Privacy to Subgroup Losses
	Sensitivity of Subgroup Losses
	Noise Addition and Privacy Guarantee
	Impact on Fairness and Utility


	More Related Work
	Client fairness in Federated Learning
	Group Fairness in Federated Learning
	Robustness in Federated Learning

	Experimental Setup
	Dataset Details
	Training Parameters
	Adaptation to tabular datasets

	Metrics
	True Positive Rate (TPR)
	Variation in TPR Across Subgroups

	Median/Average Performance Discrepancy

	Additional Results
	LipFed's Performance Against Consistency and Robustness Benchmarks
	Convergence Analysis


