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Abstract
Conventional approaches to Federated Learning
(FL), which typically involve gradient descent
(GD), pose significant challenges of poor gener-
alization due to training instability. To address
these challenges, we introduce ADAPT-FED, a
framework that refines adaptive optimization by
dynamically adjusting learning rates based on the
stability observed in GD trajectories. In doing so,
it mitigates the adverse effects of training instabil-
ity and ensures consistent model training across
diverse clients. Our empirical results demonstrate
the superior performance and generalization ca-
pability of ADAPT-FED over conventional FL
algorithms.

1. INTRODUCTION
Federated learning (FL) enables decentralized model train-
ing while preserving data privacy (Li et al., 2019a; Wang
et al., 2020b). However, FL implementation faces chal-
lenges due to the heterogeneity of clients’ data distribu-
tions (Hsieh et al., 2020), which complicates the aggregation
of global model parameters, leading to poor generalization
performance (Li et al., 2019b).

Generalization is the model’s ability to perform well on new,
unseen data beyond the training dataset (Zhang et al., 2021).
In FL, robust generalization is essential for real-world appli-
cations where models face heterogeneous data and environ-
mental conditions. Effective generalization prevents overfit-
ting and guarantees the model’s reliability across heteroge-
neous environments. Generalization is mostly pursued using
first-order gradient methods (e.g., gradient descent (GD) and
its variants (Andrychowicz et al., 2016; Bottou, 2010)) for
minimizing training loss during the learning process. How-
ever, challenges such as the absence of flat stationary points
near the trajectory of first-order gradient methods (Ahn
et al., 2022), partial client participation (Li et al., 2019b),
and differential privacy (DP) (Dwork, 2006) noise lead to
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Figure 1. Correlation of DP noise with training instability in a
10-client CIFAR10 setup (α = 0.3 non-iid). The variance in
relative progress (RP) value shows that increased DP noise elevates
instability, leading to larger gradient norms and lower accuracy.

training instability (Abadi et al., 2016). Training instability
often results in non-monotonic reductions in the training
loss as shown in Figure 1 (top left), affecting the model’s
ability to generalize (models that train stably generalize
well (Chandramoorthy et al., 2022)). Poor generalization
leads to models that fail to adapt to new or unseen data,
significantly impacting their reliability and effectiveness in
practice. Based on these limitations, our main research ques-
tion is: how can we minimize training instability to improve
generalization in heterogeneous FL environments?

Recent developments in FL have focused on enhancing
generalization through sharpness-aware optimization tech-
niques, which aim for flatter minima within the loss land-
scape, a strategy proven effective in centralized learning
environments (Foret et al., 2020; Kwon et al., 2021). Build-
ing on these successes, adaptations such as FedSAM (Qu
et al., 2022) improve generalization by applying sharpness-
aware minimization at each client, thereby promoting local
generalization. Additionally, adaptive optimization tech-
niques (Reddi et al., 2020) attempt to smooth the global loss
surface to enhance generalization in FL further. However,
despite these innovations, the localized nature of optimiza-
tions often does not fully address the global stochasticity of
FL environments, resulting in a significant gap in achieving
optimal global model performance when aggregating locally
optimal updates (Sun et al., 2023). This highlights the ongo-
ing need for novel approaches that refine local models and
effectively leverage these improvements for robust global
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generalization, a critical yet unmet challenge in FL settings.

To address the challenges above, we propose Adaptive
Federated Optimization with Learning Stability
(ADAPT-FED), a framework designed to enhance both
stability and generalization of FL models. ADAPT-FED
dynamically adjusts learning rates based on historical rela-
tive progress (RP) metrics, which act as stability indicators
within the optimization process. Specifically, ADAPT-FED
increases the learning rate during stable periods and reduces
it during unstable periods to ensure consistent training
progress and mitigate the typical instabilities caused by
erratic updates. In designing and evaluating ADAPT-FED,
we make the following contributions.

• We identify and analyze the causes of training instabil-
ity and poor generalization in heterogeneous FL settings,
focusing on the adverse effects of GD’s lack of flat sta-
tionary points, partial client participation, and DP noise.

• We propose ADAPT-FED, an FL framework that dynami-
cally adjusts learning rates based on the relative progress
(RP) metric. RP assesses the improvement or regression
in model performance from one training iteration to the
next. By adapting learning rates based on historical sta-
bility dynamics, ADAPT-FED enhances the stability and
generalization of training.

• We theoretically validate the effectiveness of
ADAPT-FED in mitigating training instability and
data heterogeneity. Our analysis provides precise bounds
on the improvements in stability and convergence rates,
highlighting how ADAPT-FED mitigates the impact of
training instability on the overall learning process.

• We conduct rigorous empirical evaluations demonstrating
that ADAPT-FED significantly enhances model general-
ization across multiple datasets (CIFAR10, CIFAR100,
and UTK), with improvements of up to +5.06%,
+14.79%, and +7.79% in generalization performance
compared to SOTA FL algorithms.

2. Related Work
Sharpness-aware FL focuses on adapting sharpness-aware
optimization techniques (Caldarola et al., 2022; Dai et al.,
2023; Qu et al., 2022; Sun et al., 2023) to address the degra-
dation of global model generalization under non-IID set-
tings. Sharpness-aware optimization methods (Cha et al.,
2021; Izmailov et al., 2018; Foret et al., 2020; Kwon et al.,
2021) improve generalization in centralized learning by
seeking flatter minima in the loss landscape (Foret et al.,
2020; Kwon et al., 2021), which has inspired several adap-
tations for FL settings by prior work. For instance, Fed-
SAM (Qu et al., 2022) and its variants (FedGAMMA (Dai
et al., 2023), SWA (Izmailov et al., 2018)) apply these opti-
mizations locally at each client, promoting convergence
to flatter local minima and improving local generaliza-

tion. In conclusion, by minimizing loss and sharpness with
smoother loss landscapes, sharpness-aware optimizations
address client drift and improve both convergence and gen-
eralization across diverse and unseen data.

Adaptive optimization techniques in FL. focus on address-
ing the convergence challenges posed by heterogeneous
client data and communication constraints. In particular,
FedAdagrad (Reddi et al., 2020) adjusts the learning rate
based on the accumulated gradient squared values, making
it effective for sparse-gradient tasks and ensuring that clients
with less frequent updates still contribute meaningfully.
FedAdam (Reddi et al., 2020) builds on this by incorporating
momentum terms to smooth out the optimization trajectory,
offering robustness to noisy gradients. FedYogi (Reddi et al.,
2020) uses a more conservative update rule, reducing the
risk of divergence in situations with large gradients. By
adapting to the local landscape of each client, these optimiz-
ers ensure faster and more stable convergence, especially
where simple methods like FedAvg (McMahan et al., 2017)
struggle due to the high variance in client updates.

Limitations of existing techniques. Sharepness-aware op-
timization methods stabilize training by optimizing parame-
ters in a local neighborhood to find flatter minima that are
hypothesized to generalize better. However, FL introduces
stochasticity due to non-IID data, and local perturbations
might not fully account for the global variance. Secondly,
while these methods enhance local sharpness minimization,
they struggle to account for broader variations in client data
distributions. As a result, the aggregation of locally opti-
mal updates does not always translate to improved global
generalization in FL (Sun et al., 2023), which can lead to
instability or slower convergence.

Further, adaptive and sharpness-aware optimization tech-
niques are significantly affected by intermittent client par-
ticipation in FL due to common issues such as connectivity
constraints, battery limitations, and privacy concerns. Since
not all devices participate in every training round, model
updates reflect a biased subset of the overall network. This
partial participation skews gradient updates, leading to in-
consistent optimization steps that can degrade generalization
and slow convergence. As participation patterns vary over
time, the relative influence of individual clients on model up-
dates shifts, further complicating the challenge of learning
a globally representative model in FL (Li et al., 2019b).

Research Implications. The outlined limitations highlight
significant gaps in the current approaches employed in FL.
There is a clear need for developing new approaches to 1)
better integrate local optimizations with global convergence
needs and 2) manage the inherent data heterogeneity and par-
ticipation variability more effectively for training stability.
This obviates the efficacy of many efficient methods (e.g.,
learning rate scheduling methods (Li et al., 2019b)) and
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highlights the need for a mechanism to scale updates based
on local progress while supporting global convergence.

3. Preliminaries and Problem Setup
To establish the context for our study, we define FL with
DP and introduce the problem of training instability in FL.
Specifically, we cover the foundational elements, such as
the common FL aggregation algorithm (FedAvg) with DP
and data heterogeneity, the notion of training instability in
centralized machine learning, and its manifestation in FL.
The central question addressed through both theoretical and
empirical analysis is: What is the effect of training insta-
bility on generalization in FL? The analysis demonstrates
that training instability deteriorates generalization.

3.1. Common FL aggregation algorithm (FedAvg)

FedAvg trains a global model using a server and K decen-
tralized clients. Each client k ∈ K has local data Dk =
{Xk,Yk}, consisting of Nk tuples {(xn

k ∈ Xk, y
n
k ∈

Yk)}Nk
n=1 representing input and output spaces. Real-world

FL scenarios often involve non-IID/heterogeneous decen-
tralized clients’ data due to factors such as data distribution
skew (Hsieh et al., 2020; Liu et al., 2020), resulting in vi-
olations of identicalness. FL uses the unified local data
D =

⋃K
k=1Dk to learn an optimal global model h∗ ∈ H

(with global parameters θ) from a class of models H that
map inputs xn

k to outputs ynk . The global model is obtained
by minimizing the global empirical risk objective F (·) at
each round t+ 1 ∈ T :

θ∗ ≜ argmin
θ

{
F (θt+1) =

K∑
i=1

wkFk(θk
t+1)

}
(1)

where Fk is the local empirical risk for client k with
local parameters initialized as θt+1

k ←− θt, and wk =(
Nk∑K

k=1 Nk

)
denotes the importance of the k-th client, typ-

ically based on the size of the dataset at client k. At the
t+ 1-th round, each client k receives the global model pa-
rameters from the server and performs local model training
over E epochs. This process adjusts the local parameters
by minimizing the local empirical risk using a constrained
view of the first-order gradient descent (GD) algorithm:

θ∗ ←− argmin
θ∗

{
θ∗ − θt+1

k

}T ∇Fk(θ
t+1
k ) s.t. ||θ∗−θt+1

k ||2 ≤ ϵ

(2)
where ∇Fk(θ

t+1
k ) represents the local empirical risk’s gra-

dients. Equation 2 finds the optimal θ∗ by searching for
parameter values within an ϵ-ball around the current local
model θt+1

k value that maximizes the linearization of the
objective Fk(θ

t+1
k ). The locally updated models are then

sent back to the server for aggregation into a global model
θ∗ =

∑K
k=1 wkθ

t+1
k without sharing clients’ local data.

However, adversaries may still infer private information
from the local data by analyzing the parameters that the

clients have trained (Shokri & Shmatikov, 2015). To miti-
gate this risk, clients apply DP by adding artificial Gaussian
noise nt+1

k ∼ N (0, σ2) to their gradients during local train-
ing and send the randomized parameters to the server. DP
protects clients from information leakage at the expense of
instability in learning, leading to poor generalization.

3.2. Instability in Machine Learning

Training instability in centralized learning (Ahn et al., 2022)
refers to the phenomenon in which GD in Equation 2 causes
the local risk Fk(θ

t+1
k ) to decrease non-monotonically. This

instability arises from the absence of flat stationary points
along the GD trajectory (Ahn et al., 2022). In this work,
we argue that this concept extends to FL, particularly when
compounded by partial device participation, which makes
the averaged sequence of global models across rounds t+ 1
{θt+1} to have a large variance (Li et al., 2019b):

Proposition 1 (Instability in FL). Assume the empirical risk
of a global model parameter θ with a weight decay is:

F (θt+1) =

K∑
k=1

wkFk(θ
t+1
k ) + γ||θt+1

k ||22 (3)

If we partition the global model parameter θt+1 = [ξ; ζ]
such that a subset of the global model parameters ζ is posi-
tive homogeneous, i.e. for any input data xk and positive
number c > 0, then the global empirical risk F (θt+1) has
no stationary point if ζ ̸= 0.

F (xk, [ξ; ζ]) = F (xk, [ξ; cζ]) (4)

Proof. The positive homogeneity condition implies that:

⟨∇ζF (xk, [ξ; ζ]), ζ⟩ = 0. (5)

Therefore, if∇ζL(θ
t+1) ̸= 0, we have:

∇ζF (θt+1) = ∇ζ

(
K∑

k=1

0 + γ||(θt+1
k ||22

)
= 2γζ. (6)

Thus, ∇ζL(θ
t+1) ̸= 0 when ζ ̸= 0 (which exists in many

models that use regularization (Ahn et al., 2022)), indicating
trivial stationary points with non-zero gradients. The non-
zero gradients are protected from adversarial attacks through
DP by perturbation through Gaussian noise:

∇ζFDP(θ
t+1) = ∇ζF (θt+1) +N (0, σ2) ̸= 0. (7)

DP noise adds additional random non-zero components to
∇ζFDP(θ

t+1), hindering stable convergence.

3.3. Characteristics of Instability in FL

Inspired by (Ahn et al., 2022) we quantify instability in
terms of global empirical risk’s behavior (relative progress)
across rounds:
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Proposition 2 (Relative progress (RP)). Assume that the
global empirical risk F (θ) is L-smooth as done in previous
works that analyze GD (Ahn et al., 2022). We define RP:

RP = η · ||∇F (θt) +N (0, σ2)|| ·
[
F (θt+1)− F (θt)

]
(8)

RP quantifies how much the global empirical risk improves
after updating the gradients at each round relative to the size
of the gradient and the step size η taken. Stability in FL is
achieved when the RP consistently remains below a negative
threshold, indicating steady and controlled progress in the
optimization process without erratic fluctuations.

Proof. We assume that the global empirical risk F (θ) is
L-smooth (we say F is L-smooth if ||∇F (θ)−∇F (θ′)|| ≤
L||θ − θ′|| for all θ,θ′ and L > 0), and subsequently
exploits the associated descent lemma:

F (θt+1) ≤ F (θt)−η
(
1− Lη

2

)
||∇F (θt)+N (0, σ2)||2 (9)

F (θt+1)− F (θt) ≤ −η
(
1− Lη

2

)
||∇F (θt) +N (0, σ2)||2

(10)

⇐⇒ η · ||∇F (θt) +N (0, σ2)|| ·
[
F (θt+1)− F (θt)

]
≤ −

(
1− Lη

2

)
· η2 · ||∇F (θt) +N (0, σ2)||3 (11)

Takeaway: Analyzing implications of the descent inequality
11 reveals two scenarios: 1) When L < 2

η , the right-hand
side (RHS) update term remains negative, ensuring each
gradient step reduces the global empirical risk, promoting
stable convergence. 2) Conversely, when L > 2

η , the RHS
term becomes positive, potentially increasing the global
empirical risk at each step, leading to divergence and desta-
bilizing the optimization.

The linearized GD objectives in Equation 11 and Equation 2
suggest that GD aims to find optimal model parameters
θ∗ in an ϵ-ball in θk-space, with the step size determined
by the η. This confines the objective’s validity to a small
region around the current parameter θt+1

k . Consequently,
larger η values cannot guarantee convergence because they
broaden the search beyond this designated region, result-
ing in substantial changes in some parameters while only
slightly adjusting others.

When DP is used in FL, the gradient norms in Equation 11
become larger due to the addition of non-zero noise val-
ues. Large gradient norms lead to excessively large updates,
which in turn cause the optimization process to overshoot
minima. This violation of the optimal step size condition
results in more unstable convergence. To avoid algorith-
mic instability and ensure fast and effective learning, it is
important to keep the η below the threshold 2

L where L is
the Lipschitz constant that bounds the rate of change of the
gradient and defines the smoothness of the loss function.

3.4. Empirical Analysis of Instability in FL

As a preliminary study, we compute the instability RP
and generalization (accuracy) metrics of FedAvg for the
CIFAR10 benchmark across FL rounds. We use the experi-
mental setup in §C.2.

Observation: In Figure 1, the RP variance values across FL
rounds are greater than zero, indicating training instability
in FL. Higher levels of DP lead to increased RP variance,
suggesting higher training instability. Additionally, higher
gradient norm values, which are observed with increasing
DP, signal slower convergence during training and a notice-
able decline in generalization.

Takeaway: In FL with DP, there exists a
sweet spot in stability where the η is optimized to
maintain better generalization. Identifying the optimal η
enables maximization of both the model’s convergence rate
and its generalization capability by allowing all parameters
to reach their optimal values, necessitating using larger η
for parameters that have a minimal impact on the model
and smaller η for those that significantly alter it.

4. Proposed Method: ADAPT-FED
Based on the preliminaries in §3, we now focus on the local
training and aggregation steps of our method ADAPT-FED
to improve the convergence and generalization capability of
FL models learning under the instability regime.

4.1. Training Process of ADAPT-FED

Local training. At the start of training round t+ 1, client
k receives the aggregated global model θt from the previ-
ous round t, initializes its local model with the global one
θt+1
k ←− θt, and runs E training epochs θt+1

k with DP.

Gradient Descent with DP. Client k trains θt+1
k using GD

to find the best local objective Fk(·) such that Equation 10
is satisfied As GD progresses, the global model’s training
stability depends on the magnitude of the learning rate η
and the gradient norms ||∇F (θt)||. When η is chosen such
that L > 2

η , we have observed that the RHS term in Equa-
tion 10 becomes positive, which can increase the empirical
risk at each step and lead to divergence, destabilizing the
optimization process. To stabilize the optimization process,
we must take into account a crucial piece of conventional
wisdom originating from the quadratic Taylor approxima-
tion model of GD. According to this wisdom (LeCun et al.,
1992; Schaul et al., 2013), if the sharpness at step e ≤ E
is L, then the η should be set no larger than 2

L to prevent
training instability. The η = 2

L rule continuously anneals
the step size, ensuring that the training objective decreases
at each iteration.

Challenges in Learning Rate Scheduling Scheduling the η

4
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Algorithm 1 ADAPT-FED

Input: Number of clients K, initial global model θ0,
initial learning rate η0, differential privacy (DP) noise
variance σ2, number of training rounds T , number of
local epochs E, learning rate decay constant β.
Output: Final global model θT

for t = 1 to T do
Server broadcasts global model θt+1 to all clients
for each client k ∈ {1, . . . ,K} in parallel do

Compute relative progress ratio for client k: RP t
k

= η · ||∇F (θt)+N (0, σ2)|| ·
[
F (θt+1)− F (θt)

]
Adjust learning rate η using historical RP :

η = η0 ·
(

β

RP t

)
;

RP t =
1

N

t∑
i=t−N+1

exp(RPi);∀i ∈ {1, . . . , t}

Initialize local model θ0
k ← θt+1

for e = 0 to E do
Compute local gradient∇Fk(θ

e
k)

Add DP noise: ∇FDP
k = ∇Fk(θ

e
k) +N (0, σ2)

Update local model: θe+1
k ← θe

k − η∇FDP
k

end for
Client k updates local model θt+1

k ← θe+1
k

end for
Server Aggregation: θt+1 =

∑K
k=1 wkθ

t+1
k

end for

using η = 2
L rule results in small η that hinder the learning

process due to the progressive increase in L at each training
iteration, causing slow or even stalled convergence (Cohen
et al., 2021). This stalled convergence happens particu-
larly when the model approaches areas of high sharpness
(high sensitivity of the loss to perturbations in the parameter
space) in the loss landscape, which are typically regions
with steep gradients. Thus, the inverse relationship 2

L re-
sults in tiny η, potentially hindering convergence by making
the steps too cautious and slow. It is also computationally
expensive to compute L at each iteration since it involves
the second-order derivative of the objective function.

4.2. ADAPT-FED Dynamic Learning Rate Adjustment
To address training instability based on sharpness informa-
tion from the loss landscape and mitigate the challenges
described, we present the entire process of ADAPT-FED in
Algorithm 1. Let F (θ) be an unstable objective func-
tion: a function differentiable w.r.t. parameters θ . We want
to minimize the expected value of this function, E[F (θ)],

relative to its parameters, θ . We use {RP1, . . . , RPT } to
show the objective function’s training stability measures at
different FL training rounds t ∈ {1, . . . , T}. ADAPT-FED
introduces a novel method for scheduling the learning rate
η. It dynamically schedules the η based on the moving aver-
ages of the historical RP, where the hyperparameter β > 0
controls the decay rate of the moving average, allowing for
precise control of GD steps based on the observed training
instability. Specifically, ADAPT-FED calculates the mov-
ing average of RP values across training rounds (RP t) to
smooth out the measure of recent training progress over a
window of N iterations. This average is vital for assessing
the overall direction and stability of the learning process:

RP t =
1

N

t∑
i=t−N+1

exp(RPi); ∀i ∈ {1, . . . , t} (12)

Inspired by (LeCun et al., 1992; Schaul et al., 2013), which
proposes that the η should be chosen based on the inverse
sharpness of the objective function ηk = 2

L that measures
stability, ADAPT-FED schedules the η for the next iteration
ηt+1 based on the inverse of the moving average of RP t.
This transformation, in which each RPi value is exponen-
tiated before the moving average is calculated, has several
benefits: 1) The exponential function increases very rapidly,
making it possible to assign more weight to higher RP val-
ues; thus, higher RP values will have a disproportionately
larger learning rate (η) scheduling effect for enhanced stabil-
ity. 2) If the RP includes negative values, the exponential
function ensures all transformed RP s are positive to guar-
antee positive learning rates. This scaling is designed to
stabilize the training dynamically, responding to the imme-
diate past training stability conditions:

η = η0 ·
(

β

RP t

)
(13)

Intuition: ADAPT-FED fine-tunes η to match the actual
training dynamics. When the RP is low, indicative of stable
progress, η increases, which is conducive to faster conver-
gence. Conversely, high RP signals training instability,
prompting a reduction in the η to safeguard against potential
divergences, mitigating training instability.

Based on the learning rate scheduling procedure in Equa-
tion 13, we perform the local model θt

k update as:

θt+1
k = θt+1

k − η0 ·
(

β

RP t

)
· ∇Fk(θ

t+1
k ) (14)

Each training round t ends with the termination of local
training and the return of updated local models to the server
for aggregation into a global model.

Server Aggregation: The updated local models are then
aggregated at the server to newly update the global model
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θt+1 for the next round. We adopt the commonly used
FedAvg aggregation scheme to aggregate local models into
a global model θt+1 =

∑K
k=1 wkθ

t+1
k .

4.3. Adaptive Learning Rate Components
In this section, we outline the methods for setting the learn-
ing rate decay constant β and the initial learning rate η0.

4.3.1. LEARNING RATE DECAY CONSTANT β

β is selected to dynamically adapt the η across training
rounds to effectively manage instability. Drawing inspi-
ration from feedback control systems, where responses
are often tailored based on the deviation from a desired
state (Barto et al., 1983), β is designed to respond expo-
nentially to the relative progress value RPt. By setting
β = exp(RPt), the η adjustment becomes highly respon-
sive to fluctuations in training stability, increasing the η
when deviations are minor and decreasing it substantially
when deviations are large.

This exponential transformation of RP values by β effec-
tively scales the η adjustments in a manner that is both sen-
sitive and proportional to the observed training dynamics.
The formulation η = η0 ·

(
exp(RPt)

RPt

)
provides a solution

to adaptively control the η by embedding a mechanism that
intuitively mimics natural adaptive responses, enhancing the
algorithm’s ability to cope with the complex and variable
training instability conditions in FL.

4.3.2. INITIAL LEARNING RATE η0

We empirically determine a suitable initial learning η0 in-
spired by learning rate range test in (Smith, 2017), which
involves progressively testing a series of learning rates eta
in a predefined range and observing the model performance
associated with each η. The goal is to identify a sweet spot
where empirical risk generalizes well. This practical, data-
driven method makes it easy to choose an η0 that works well
with the federated network and how its data is distributed.

5. Theoretical Analysis
This section discusses the theoretical bounds of
ADAPT-FED, focusing on its convergence rate. We
provide theorems (with proofs established in §B) that set
upper bounds on how quickly ADAPT-FED can stably
converge, leading to performance generalization. These
theorems are essential for understanding how the eta affects
convergence. Before that, we introduce the assumptions
consistent with other works in FL (Li et al., 2019b):

5.1. Assumptions:

1. L-smoothness (Assumption 1): Each Fk satisfies

Fk(v) ≤ Fk(θ) +∇Fk(θ)
⊤(v − θ) +

L

2
||v − θ||2.

2. Strong convexity (Assumption 2): Each Fk is µ-
strongly convex, ensuring

Fk(v) ≥ Fk(θ) +∇Fk(θ)
⊤(v − θ) +

µ

2
||v − θ||2.

3. Bounded gradient variance (Assumption 3): For each
k,

E[||∇Fk(θ
t
k, ξ

k
t )−∇Fk(θ

t
k)||2] ≤ σ2

k.

4. Bounded gradient norm (Assumption 4): The expected
squared norm of gradients is uniformly bounded,

E[||∇Fk(θ
t
k, ξ

t
k)||2] ≤ G2

5.2. Convergence Analysis of ADAPT-FED

Theorem 1: Given the dynamic learning rates ηt and the
assumptions in 5.1, the convergence behavior of the FL algo-
rithm can be described by the following inequality bound:

E[||θT − θ∗||2] ≤
T−1∏
t=0

(1− ηµ)E[||θ0 − θ∗||2]

+

T−1∑
t=0

η2

(
N∑

k=1

w2
kσ

2
k + 6LΓ + 8

N∑
k=1

wk(E − 1)2G2

) (15)

where Γ = F (·;θ)∗ −
∑K

k=1 wkFk(·;θk)
∗ quantifies the

degree of data heterogeneity across clients. If the data is
heterogeneous, then Γ is nonzero. Its magnitude reflects
the heterogeneity of the data distribution, κ = L

µ , B =∑K
k=1 w

2
kσ

2
k + 6LΓ + 8(E − 1)2G2, E is the no. of local

training epochs for each device k, and γ = max{8κ,E}.

Observation: The convergence analysis of ADAPT-FED
demonstrates the possible impact of dynamic rate adjust-
ments on convergence efficiency and stability in FL settings.

Remark (Decreasing Learning Rate): A decreasing ηt im-
proves the convergence and stability by reducing the influ-
ence of the summation term in Equation 16, which includes
contributions from gradient noise G and data heterogene-
ity Γ. G and Γ terms have a large impact on the slower
convergence. When ADAPT-FED schedules ηt to be small,
then the related terms in Equation 16 can be sufficiently
suppressed; ADAPT-FED can accelerate the convergence
(hence training stability and generalization) even under the
impact of noisy gradients and heterogeneous FL environ-
ments. In the extensive experiments, results in §6 confirm
that ADAPT-FED uses smaller values of ηt under training
instability and heterogeneity regimes, leading to a signifi-
cant generalization than other SOTA baselines.

Takeaway: The dynamic scheduling of η in the
ADAPT-FED demonstrates the critical importance of adap-
tively managing ηt to realize fast convergence and stabil-
ity. Decreasing η relative to historical stability levels pro-
motes sustained and stable convergence, enhancing the al-
gorithm’s robustness to the challenges posed by data het-
erogeneity and gradient noise. This adaptive approach to

6
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Table 1. Generalization performance of ADAPT-FED versus baseline algorithms based on 20 clients across three datasets: (a) CIFAR10,
(b) CIFAR100, and (c) UTK, respectively, ηo = 0.1.

CIFAR-10 CIFAR-100 UTK

Algorithm Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3)

0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03

FedAvg 41.83 41.83 36.20 32.72 62.29 59.05 53.79 50.27 22.12 21.77 21.15 19.74 41.81 41.24 37.66 34.20 61.71 61.71 53.73 53.94 74.28 74.28 60.14 60.20
FedSAM 42.45 44.40 45.02 45.02 60.85 60.41 60.73 59.00 18.23 20.17 20.53 19.53 41.52 42.32 41.90 42.96 72.98 72.98 72.77 72.13 82.22 82.22 82.78 82.43
FedASAM 45.57 45.49 45.89 45.89 61.91 61.49 61.07 61.07 22.29 22.57 21.91 21.91 42.82 42.19 42.60 42.60 72.19 72.19 73.25 73.25 83.30 83.30 82.68 82.68
FedProx 46.90 42.64 37.10 33.85 61.50 57.51 54.37 50.03 21.93 21.98 21.15 20.12 42.10 41.36 37.62 34.15 61.70 61.70 53.64 53.26 74.01 74.01 60.93 59.08
FedAdagrad 45.24 41.83 36.20 32.74 62.30 59.10 53.79 50.28 22.13 21.62 21.15 19.74 41.83 41.35 37.77 34.50 61.89 61.89 53.73 53.95 74.30 74.30 60.41 60.43
FedAdam 45.24 41.83 36.20 32.74 62.29 59.05 53.91 50.47 22.13 21.62 21.15 19.74 41.56 41.78 37.61 34.25 61.89 61.89 53.73 53.95 74.28 74.28 60.14 60.20
FedYogi 45.24 41.83 36.20 32.74 62.47 59.44 53.27 50.14 22.13 21.62 21.15 19.74 41.82 41.56 37.69 34.20 61.89 61.89 53.73 53.95 74.91 74.48 60.27 60.20
ADAPT-FED (ours) 43.39 49.99 50.78 49.55 72.01 73.88 73.88 74.60 7.75 23.08 13.12 24.29 48.41 52.48 54.88 56.13 79.20 79.20 76.22 76.22 84.95 84.95 85.13 84.13

Table 2. Generalization performance of ADAPT-FED versus baseline algorithms based on 20 clients across three datasets: (a) CIFAR10,
(b) CIFAR100, and (c) UTK, respectively, ηo = 0.04.

CIFAR-10 CIFAR-100 UTK

Algorithm Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3)

0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03

FedAvg 50.63 48.59 44.62 40.86 67.48 66.28 62.84 59.72 33.09 32.61 30.82 29.26 50.10 49.61 47.38 45.07 70.58 70.58 53.86 53.08 80.37 80.37 59.29 58.26
FedSAM 50.47 50.73 51.03 51.11 67.59 66.66 67.25 67.42 32.97 33.32 34.09 33.24 50.75 50.71 50.61 51.03 75.59 75.59 76.39 76.54 83.75 83.75 83.75 83.59
FedASAM 51.26 51.48 51.23 51.23 67.06 67.98 67.63 67.63 34.10 33.94 33.85 33.85 51.04 51.04 50.74 50.74 76.19 76.19 77.03 77.03 83.69 83.69 83.81 83.81
FedProx 50.82 48.78 44.77 41.15 66.97 65.27 62.45 59.17 32.98 32.70 31.00 29.42 49.67 49.47 47.51 44.68 70.49 70.49 53.59 53.12 79.75 79.75 58.94 57.02
FedAdagrad 50.89 48.66 44.68 40.96 67.48 66.28 62.84 59.72 32.98 32.70 31.00 29.42 50.10 49.61 47.38 45.07 70.58 70.58 53.86 53.08 80.35 80.84 59.94 58.62
FedAdam 50.63 48.59 44.62 40.86 67.48 66.28 62.84 59.72 32.98 32.70 31.00 29.42 50.10 49.61 47.38 45.07 70.58 70.58 53.86 53.08 80.45 80.91 59.61 58.10
FedYogi 50.63 48.59 44.62 40.86 67.48 66.28 62.84 59.72 32.98 32.70 31.00 29.42 50.10 49.61 47.38 45.07 70.58 70.58 53.86 53.08 80.37 80.37 59.29 58.26
ADAPT-FED (ours) 56.49 59.66 59.78 60.01 75.86 77.48 77.65 77.99 40.66 44.63 43.52 44.51 54.69 57.40 49.83 54.27 81.31 81.31 80.15 81.53 85.56 85.56 84.15 84.67

learning rate management is beneficial for optimizing FL
across real-world heterogeneous scenarios.

6. Experiments
We extensively evaluate ADAPT-FED’s effectiveness in
achieving generalization for FL with DP under different
data heterogeneity levels while adhering to two constraints:
maintaining performance stability; and faster convergence.

6.1. Experimental Setup

Models and datasets. We assess ADAPT-FED’s effi-
cacy using the setup in §C.2. We compare ADAPT-FED
with SOTA baselines on the FL classification benchmarks
datasets CIFAR10, CIFAR10, and UTK, examining general-
ization across different client partitions in FL.

Baselines: We evaluate ADAPT-FED across three key
categories: 1) FL baseline category represented by Fe-
dAvg, serves as the standard learning scheme in FL.
2) FL sharpness-aware category includes FedSAM and
FedASAM (Caldarola et al., 2022; Dai et al., 2023; Qu
et al., 2022; Sun et al., 2023), which flattens minima in the
loss landscape to improve model generalization. 3) FL reg-
ularization category includes FedProx(Mohri et al., 2019),
which uses regularization techniques to minimize the diver-
gence of local models for improved model generalization.

Hyperparameters For all evaluations on the benchmarks,
we tuned the hyperparameters: µ for FedProx is tuned
among two choices {0.1, 1}. For the parameters ρ, η of
FedSAM and FedASAM, we borrow the same values that
were used in the original paper by (Caldarola et al., 2022).
Following the benchmark suggested in (Ahn et al., 2022;
Cohen et al., 2021), we set the initial local learning rate

as η = {0.1, 0.04}. We set the noniid-ness α = 0.3 with
DP σ2 = 0.01 for all the evaluations in the main paper
(other values of α and σ2 are studied and presented in Ap-
pendix D). We present the empirical result across 10 and 20
clients.

6.2. Performance Evaluation

6.2.1. GENERALIZATION ANALYSIS FL

ADAPT-FED significantly outperforms SOTA techniques in
heterogeneous FL settings (α = 0.05) on 20 clients, shown
in Table 1 with ηo = 0.1 (refer to Table 4 in Appendix D.1
for results with 10 clients and detailed generalization evalu-
ation). ADAPT-FED demonstrates generalization improve-
ments of up to +5.06%, +14.79%, and +7.79% for CI-
FAR10, CIFAR100, and UTK respectively. These results
confirm that ADAPT-FED effectively mitigates the strong
training instability associated with heterogeneity, thereby
enhancing generalization across clients. We believe these
generalization gains are largely due to ADAPT-FED’s use
of stability-based adaptive learning rates, which directly ad-
dress training instabilities caused by the GD learning algo-
rithm. In contrast, existing techniques for training stability
primarily focus on instabilities caused by discrepancies in
local models due to data heterogeneity across clients, which
does not inherently guarantee stability in GD learning. As
heterogeneity is alleviated, as α increases from 0.05 to 0.3,
generalization performance across all baselines improves
due to the homogeneity of data distribution, which reduces
discrepancies between local models across clients. Nev-
ertheless, ADAPT-FED continues to demonstrate superior
capability in enhancing generalization.

Takeaway: ADAPT-FED improves generalization com-
pared to SOTA techniques in non-IID FL environments.
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Figure 2. Convergence of the training loss of ADAPT-FED and baseline algorithms on 10 clients (CIFAR10, CIFAR100, and UTK,
noniid-ness α = 0.3) with DP σ2 = 0.01, ηo = 0.1.
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Figure 3. Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients across three datasets (CIFAR10, CIFAR100,
and UTK, noniid-ness α = 0.3, σ2 = 0.01), ηo = 0.1.

6.2.2. RATE OF CONVERGENCE ANALYSIS

We compare ADAPT-FED with SOTA techniques to eval-
uate its ability to achieve faster convergence. On the
CIFAR10, CIFAR100, and UTK datasets, ADAPT-FED
demonstrates faster and more robust convergence than the
baselines as shown in Figure 2. The improved convergence
rate is a direct result of ADAPT-FED’s use of adaptive learn-
ing rates, which specifically address training instabilities
caused by the GD learning algorithm. In contrast, other
techniques mainly focus on mitigating instability arising
from discrepancies in local models due to data heterogene-
ity across clients, which does not inherently ensure stable
learning. For detailed empirical study on rate of conver-
gence, see Appendix D.2, similar observations can be made
in Figure 20, where ADAPT-FED demonstrates robust con-
vergence under heterogeneity in FL.

Takeaway: ADAPT-FED leads to faster and more robust
convergence compared to SOTA techniques in FL with DP.

6.2.3. TRAINING STABILITY ANALYSIS

We compare ADAPT-FED with baselines to assess its ef-
fectiveness in achieving training stability. ADAPT-FED ex-
hibits more stable training than baseline methods as shown
in Figure 3. This enhanced stability is a direct result of
ADAPT-FED ’s use of adaptive learning rates, which ad-
dress the issue of high gradient norms in GD. For detailed
empirical stability analysis, see Appendix D.3.

Takeaway: ADAPT-FED enhances training stability com-
pared to SOTA baseline techniques in FL with DP.

6.2.4. ANALYSIS OF INITIAL LEARNING RATE ηo

Table 2 shows the generalization performance of
ADAPT-FED and SOTA baselines relative to small initial
learning rate ηo. When the initial learning rate is low,
ADAPT-FED still outperforms SOTA techniques in FL set-
tings. However, we observe a degradation in overall gen-
eralization due to the slow learning effects of small η. For
detailed ablation study on η see Appendix E.1.

Takeaway: ADAPT-FED enhances generalization com-
pared to SOTA techniques even in settings with low ηo.

7. Conclusion
We introduce ADAPT-FED, an FL method that tackles the
challenges of training instability and suboptimal general-
ization in FL. ADAPT-FED dynamically adjusts learning
rates based on historical relative progress metrics, enhanc-
ing stability and improving the generalization across clients
with heterogeneous data. We establish a detailed theoretical
framework analyzing how ADAPT-FED mitigates the im-
pacts of data heterogeneity and gradient noise on the learn-
ing process. Our theoretical findings are supported by empir-
ical evaluations across various datasets, where ADAPT-FED
consistently outperforms SOTA optimization methods in
improving stability, accelerating convergence, and general-
ization. These improvements make ADAPT-FED a robust
solution for practical, real-world FL applications.
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Appendix

We provide additional information for our paper, ADAPT-FED: Adaptive Federated Optimization with Learning Stability, in
the following order:

• More Related Work (Appendix A)

• Additional Theoretical Analysis (Appendix B)

• Detailed Preliminaries and Problem Setup (Appendix C)

• Additional Experimental Results (Appendix D)

• Additional Ablation Study (Appendix E)

A. Related Work
Sharpness-aware FL focuses on adapting sharpness-aware optimization techniques (Caldarola et al., 2022; Dai et al., 2023;
Qu et al., 2022; Sun et al., 2023) to FL to address the degradation of global model generalization under non-IID settings.
Sharpness-aware optimization methods (Cha et al., 2021; Izmailov et al., 2018; Foret et al., 2020; Kwon et al., 2021) have
successfully improved generalization in centralized learning by seeking flatter minima in the loss landscape, as shown
by (Foret et al., 2020) and (Kwon et al., 2021). Given these improvements in centralized settings, the question arises: can
these techniques enhance generalization in FL, especially with heterogeneous data across clients?

To answer this question, several adaptations have been proposed. FedSAM (Qu et al., 2022) was one of the first to apply SAM
locally at each client, promoting convergence to flatter local minima and improving local generalization. However, SAM
alone did not fully address client drift caused by data heterogeneity. To overcome this challenge, FedGAMMA (Dai et al.,
2023) extended sharpness-aware optimization globally by aligning local updates with a flatter global minimum, incorporating
client variance reduction to ensure local models aligned with the global objective and overcoming the limitations of simple
aggregation methods like FedAvg.

Additionally, Stochastic Weight Averaging (SWA) and its dense variant, SWAD, were introduced to further enhance global
model generalization. SWA, as demonstrated by (Izmailov et al., 2018), averages weights from multiple iterations to smooth
the global loss surface. SWAD, which builds on SWA, reduces overfitting by densely sampling weights, resulting in flatter
minima and better generalization, particularly in domain generalization tasks (Caldarola et al., 2022; Cha et al., 2021).

In conclusion, sharpness-aware optimization has proven highly effective in FL, addressing client drift and improving both
convergence and generalization of the global model. By minimizing both loss and sharpness, these methods create smoother
loss landscapes, enabling FL models to generalize more robustly across diverse and unseen data.

B. Theoretical Analysis
This section explores how ADAPT-FED behaves theoretically, focusing on its convergence rate. We provide theorems that
set upper bounds on how quickly ADAPT-FED can converge. These theorems are essential for understanding how the
learning rate affects convergence. Before that, we introduce the following assumptions: Assumptions:

1. L-smoothness (Assumption 1): Each Fk satisfies

Fk(v) ≤ Fk(θ) +∇Fk(θ)
⊤(v − θ) +

L

2
||v − θ||2.

2. Strong convexity (Assumption 2): Each Fk is µ-strongly convex, ensuring

Fk(v) ≥ Fk(θ) +∇Fk(θ)
⊤(v − θ) +

µ

2
||v − θ||2.

3. Bounded gradient variance (Assumption 3): For each k,

E[||∇Fk(θ
t
k, ξ

k
t )−∇Fk(θ

t
k)||2] ≤ σ2

k.
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B.1. Convergence Analysis of ADAPT-FED

Theorem 1: Given the dynamic learning rates ηt and the assumptions stated, the convergence behavior of the federated
learning algorithm can be described by:

E[||θT − θ∗||2] ≤
T−1∏
t=0

(1− ηtµ)E[||θ0 − θ∗||2] +
T−1∑
t=0

η2t

(
N∑

k=1

w2
kσ

2
k + 6LΓ + 8

N∑
k=1

wk(E − 1)2G2

)
(16)

where Γ = F (·;θ)∗ −
∑K

k=1 wkFk(·;θk)
∗ (F ∗ and F ∗

k are the minimum values of F ∗ and F ∗
k , respectively) quantifies the

degree of data heterogeneity; If the data are non-iid, then Γ is nonzero, and its magnitude reflects the heterogeneity of the
data distribution, κ = L

µ , B =
∑K

k=1 w
2
kσ

2
k + 6LΓ + 8(E − 1)2G2, E is the number of local training rounds/epochs for

each device k, and γ = max{8κ,E}.

Observation: The convergence analysis of ADAPT-FED under varying learning rate schedules highlights the nuanced
impact of dynamic rate adjustments on the stability and efficiency of convergence in federated learning settings.

Case 1: Increasing Learning Rate As the learning rate (ηt) increases, the decay factor (1 − ηtµ) in the convergence
bound diminishes, which could inadvertently raise the upper bound of the expected error. This effect intensifies if ηtµ > 1,
potentially resulting in the product term becoming positive and causing the model to diverge.

Practical Impacts:

• Potential for Faster Convergence: An elevated ηt can accelerate the convergence process when the model parameters
are significantly misaligned from the optimum and when the gradient noise is relatively low. This can be particularly
beneficial in the early stages of training, where rapid progress towards the optimum is desired.

• Risk of Instability: Continuous increases in ηt without careful modulation may lead to overshooting and divergence,
especially pronounced in non-IID data environments where the effects of data heterogeneity (Γ) are substantial.

Case 2: Decreasing Learning Rate: A decreasing ηt improves the stability by preserving the decay factor closer to zero,
systematically mitigating the initial error’s impact. This controlled reduction in the learning rate also curtails the influence
of the summation term, which includes contributions from gradient noise and data heterogeneity.

Practical Impacts:

• Enhanced Stability and Convergence: Reducing ηt gradually ensures a more stable convergence trajectory, crucial
in federated environments characterized by significant data heterogeneity (Γ) and high gradient variance (σ2

k). This
approach ensures that the learning process is not only stable but also progressively moves toward the optimal set of
parameters.

• Robustness to Non-IID Data: The systematic decrease in ηt proves especially effective in non-IID settings, mitigating
the adverse impacts of uneven data distributions and ensuring that the federated learning model remains robust across
diverse and variable client data.

Takeaway: The dynamic scheduling of learning rates within the ADAPT-FED framework, as demonstrated by the theoretical
analysis, underscores the critical importance of adaptively managing ηt to balance the trade-offs between fast convergence
and stability. In increasing learning rate scenarios, while there is a potential for quick initial progress, there exists a significant
risk of instability and divergence, particularly under non-IID conditions. Conversely, decreasing learning rates promote
sustained and stable convergence, enhancing the algorithm’s robustness to the challenges posed by data heterogeneity and
gradient noise. This adaptive approach to learning rate management is crucial for optimizing federated learning processes,
ensuring effective convergence across a spectrum of real-world scenarios where data distributions are inherently diverse and
complex.

B.1.1. ADDITIONAL NOTATION

Let θt
k be the model parameter maintained in the k-th device at the t-th step. Let TE be the set of global synchronization

steps, i.e., TE = {nE|n = 1, 2, . . . }. If t + 1 /∈ TE , i.e., the time step to communication, FedAvg activates all devices.

12
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Then, the update of FedAvg with partial active devices can be described as:

vt+1
k = θt

k − ηt∇Fk(θ
t
k, ξ

t
k), (17)

θt+1
k =

vt+1
k if t+ 1 /∈ TE ,∑N
k=1 pkv

t+1
k∑N

k=1 pk
if t+ 1 ∈ TE .

(18)

Here, an additional variable vt+1
k is introduced to represent the immediate result of one step GD update from θt

k. We
interpret θt+1

k as the parameter obtained after communication steps.

B.1.2. KEY LEMMAS

To convey the proof clearly, it would be necessary to prove certain useful lemmas. We refer the reader to (Li et al., 2019b)
for detailed proofs.

Lemma 1 (Results of one step SGD): Assume Assumption 1 and 2. If ηt ≤ 1
4L , we have

E[||vt+1
k − θ∗||2] ≤ (1− ηtµ)E[||θt − θ∗||2] + η2tE[||gt − ḡt||2] + 6Lη2tΓ + 2η2t

N∑
k=1

pkE[||θt − θt
k||2],

where Γ = F ∗ −
∑N

k=1 pkF
∗
k ≥ 0.

Lemma 2 (Bounding the variance): Assume Assumption 3 holds. It follows that

E[||gt − ḡt||2] ≤
N∑

k=1

p2kσ
2
k.

Lemma 3 (Bounding the divergence of {wt
k}): Assume Assumption 4, that ηt is non-increasing and ηt ≤ 2ηt+E for all

t ≥ 0. It follows that

E

[
N∑

k=1

pk||θt − θt
k||2
]
≤ 4η2t (E − 1)2G2.

1. Starting Point and Gradient Update:

E[||vt+1 −w∗||2] ≤ (1− ηtµ)E[||wt −w∗||2] + η2tE[||gt − gt,k||2] + 6Lη2tΓ + 2η2t

N∑
k=1

pkE[||wt −wt,k||2]

2. Using Lemma 2 and Lemma 3:

E[||gt − gt,k||2] =
N∑

k=1

p2kσ
2
k

E[||wt −wt,k||2] = 4η2t (E − 1)2G2

3. Combining Errors and Simplifying:

E[||vt+1 −w∗||2] ≤ (1− ηtµ)E[||wt −w∗||2] + η2t (

N∑
k=1

p2kσ
2
k + 6LΓ + 8

N∑
k=1

pk(E − 1)2G2)

4. Recurrence Relation and Final Convergence Bound:

E[||wT −w∗||2] ≤
T−1∏
t=0

(1− ηtµ)E[||w0 −w∗||2] +
T−1∑
t=0

η2t (

N∑
k=1

p2kσ
2
k + 6LΓ + 8

N∑
k=1

pk(E − 1)2G2)
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C. Preliminaries and Problem Setup
The purpose of this section is to provide additional Preliminaries and Problem Setup details that are dropped due to the
limited space of the main paper. It includes the plots of training instability and the Experimental Setup for the CIFAR10,
CIFAR100, and UTK datasets.

C.1. Training Instability Study: Results Overview

We measure the training instability (relative progresss RP ) and its impacts on generalization (utility/accuracy) in FL across
CIFAR10 (Figure 4, Figure 5, Figure 6, and Figure 7), UTK (Figure 8, Figure 9, Figure 10, and Figure 11) and CIFAR100
(Figure 12, Figure 13, Figure 14, and Figure 15) datasets. As depicted in most of the graphs on the left, the RP , which
measures the stability of training, shows significant variance across training rounds. This variance is persistent and positive,
indicating that the learning process is not stable. This instability is further compounded as the differential privacy level
increases. The increasing variance in RP with higher levels of DP suggests that the noise added for privacy protection is
disrupting the learning process, making it harder for the model to converge consistently. This behavior demonstrates the
challenge of balancing model privacy with learning efficacy in FL environments.

The middle graphs show RP variance against different levels of differential privacy and confirm that as privacy constraints
tighten (σ2 increases), the overall variability in model performance also increases. The trend line indicates a clear positive
correlation between RP variance and the privacy level, highlighting a direct impact of enhanced privacy measures on
learning stability. Higher differential privacy levels introduce more noise into the training process, which can lead to larger
updates that are less about the true gradient direction and more about compensating for the noise. This can cause the training
process to become unstable, as shown by the rising RP variance.

The right most graphs illustrates that with increasing DP, not only do gradient norms increase, but also accuracy decreases
significantly. This suggests that the model is struggling to generalize effectively under higher training instability. Larger
gradient norms indicate more substantial updates during training, which can overshoot optimal points due to the high noise
levels introduced by DP. This is likely contributing to the observed decrease in model accuracy as DP levels increase,
illustrating the difficulty in navigating the trade-off between privacy and generalization.

These detailed analyses and observations demonstrate the complex interplay between privacy, stability, and generalization
in FL. By fine-tuning the learning rates and understanding the impact of differential privacy on learning dynamics, it is
possible to improve both the stability and generalization of models trained under privacy constraints.
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Figure 4. Correlation of DP noise with training instability in a 10-client CIFAR10 setup (α = 0.3 non-iid, η0 = 0.1). Increased DP noise
elevates instability, as shown by RP value variance, causing larger gradient norms and lower accuracy.

C.2. Experimental Setup

C.2.1. DATASETS AND MODEL ARCHITECTURES

Dataset: We analyze two widely utilized image classification datasets for federated learning: CIFAR10 (Krizhevsky
et al., 2009) and CIFAR100 (Sharma et al., 2018), along with the UTK (Savchenko, 2021) image classification dataset.
The benchmarks for these datasets in a federated learning context are adopted from established benchmarks based on
CIFAR-10/100, as proposed by (Foret et al., 2020). Each dataset is allocated among K ∈ {10, 20} clients, employing
a Dirichlet distribution-based approach for data distribution as done in (Zeng et al., 2023). The resultant data partitions

14



Submission and Formatting Instructions for ICML 2024

0 25 50 75 100 125 150 175 200
# Rounds

0.6

0.4

0.2

0.0

0.2

0.4

Re
la

tiv
e 

Pr
og

re
ss

 (R
P)

FedAvg; 2 = 0.0
FedAvg; 2 = 0.01

FedAvg; 2 = 0.02
FedAvg; 2 = 0.03

0.00 0.01 0.01 0.01 0.02 0.02 0.03
Differential Privacy Level 2

0.02
0.04
0.06
0.08
0.10
0.12
0.14

RP
 v

ar
ia

nc
e 

2 RP

FedAvg; 2 = 0.00
FedAvg; 2 = 0.01
FedAvg; 2 = 0.02
FedAvg; 2 = 0.03
Trend Line

2 = 0.0 2 = 0.01 2 = 0.02 2 = 0.03
Differential Privacy Level

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

3.33

30.47

60.58

90.77

62.30 59.06
53.79 50.28

Gradient Norm Accuracy (%)

0

20

40

60

80

100

Gr
ad

ie
nt

 N
or

m

Figure 5. Correlation of DP noise with training instability in a 20-client CIFAR10 setup (α = 0.3 non-iid, η0 = 0.1). Increased DP noise
elevates instability, as shown by RP value variance, causing larger gradient norms and lower accuracy.
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Figure 6. Correlation of DP noise with training instability in a 20-client CIFAR10 setup (α = 0.3 non-iid, η0 = 0.04). Increased DP
noise elevates instability, as shown by RP value variance, causing larger gradient norms and lower accuracy.

Table 3. Datasets and Clients
Dataset Task Total Clients Total Samples Training Samples Test Samples

CIFAR10 Image classification 10,20 60,000 50,000 10,000
CIFAR100 Image classification 10,20 60,000 50,000 10,000
UTK Image classification 10,20 23,708 19,208 4,500

are shown in Figure 16, Figure 17, Figure 18, and Figure 19. Here, each client’s prior distribution follows a multinomial
distribution derived from a symmetric Dirichlet distribution with parameter α. As α approaches infinity, the data distribution
among clients approximates an IID scenario. Conversely, a reduction in α, moving towards zero, shifts the distribution
towards a non-IID scenario. We explore different scenarios with α ∈ {0.05, 0.3} across the CIFAR10, CIFAR100, and UTK
datasets.

Model architecture: By following the backbone architecture of the unstable convergence of gradient descent work (Ahn
et al., 2022; Cohen et al., 2021). Specifically, we use GD to train a VGG (with batch normalization) neural network (Ding
et al., 2021). For a fair comparison, we use the same backbone architecture for all different types of methods for all
evaluations. Also, the same architecture is identically used for the two CIFAR-10/100 benchmarks. Noteworthy, we added
ResNet backbone for UTK dataset because of poor performance relative to VGG on this dataset.

C.2.2. DATA PRE-PROCESSING (CIFAR-10 AND CIFAR-100).

All training and test input images of size 32× 32 pixels are first padded by 4 pixels on each side, then randomly cropped
back to 32 × 32 pixels. This technique helps the model become invariant to small translations of the input image. Each
image is flipped horizontally with a probability of 0.5. This step increases the diversity of the training data and helps prevent
overfitting by simulating different viewing angles. After converting the image to a tensor, pixel values are normalized using
the dataset-specific mean (0.4914, 0.4822, 0.4465) and standard deviation (0.2023, 0.1994, 0.2010). This normalization
facilitates faster convergence by scaling the input features to have zero mean and unit variance.
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Figure 7. Correlation of DP noise with training instability in a 10-client CIFAR10 setup (α = 0.05 non-iid). Increased DP noise elevates
instability, as shown by RP value variance, causing larger gradient norms and lower accuracy.
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Figure 8. Correlation of DP noise with training instability in a 10-client UTK setup (α = 0.3 non-iid, η0 = 0.1). Increased DP noise
elevates instability, as shown by RP value variance, causing larger gradient norms and lower accuracy.

C.2.3. DATA PRE-PROCESSING (UTK).

All training and test input images are resized to 32× 32 pixels, standardizing the input size across all images and making it
suitable for processing by the model designed for CIFAR datasets. Pixel values are normalized using the mean (0.49) and
standard deviation (0.23). This dataset appears to have grayscale images (indicated by a single channel mean and standard
deviation), and normalization adjusts the pixel intensity distribution similarly to CIFAR datasets. Images undergo the same
resizing to 32 × 32 pixels and are normalized using the same values as the training images. Consistent image size and
normalization between the training and testing phases help in evaluating the model’s performance accurately.

D. Additional Experimental Results
Here, we provide the additional experimental results that are dropped due to the limited space of the main paper. It includes
the the plots for generalization analysis, rate of convergence analysis, and training stability analysis using for the CIFAR10,
CIFAR100, and UTK datasets.

D.1. Generalization Analysis FL

We conduct a thorough analysis of ADAPT-FED’s generalization performance against various baseline FL algorithms. Our
primary goal is to assess the efficacy of ADAPT-FED in generalizing under diverse privacy settings and heterogeneous data
distributions. Generalization analyses are performed on three widely recognized datasets: CIFAR10, CIFAR100, and UTK,
comparing ADAPT-FED with several SOTA FL algorithms, including FedAvg, FedProx, FedAdagrad, FedYogi, FedSAM,
and FedASAM.

D.2. Rate of Convergence Analysis

We conduct a thorough analysis of ADAPT-FED’s convergence performance against various baseline FL algorithms. Our
primary goal is to assess the efficacy of ADAPT-FED in achieving faster and more stable convergence rates, particularly
under diverse privacy settings and heterogeneous data distributions. Convergence analyses are performed on three widely
recognized datasets: CIFAR-10, CIFAR-100, and UTK, comparing ADAPT-FED with SOTA FL algorithms, including
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Figure 9. Correlation of DP noise with training instability in a 20-client UTK setup (α = 0.3 non-iid, η0 = 0.1). Increased DP noise
elevates instability, as shown by RP value variance, causing larger gradient norms and lower accuracy.
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Figure 10. Correlation of DP noise with training instability in a 20-client UTK setup (α = 0.3 non-iid, η0 = 0.04). Increased DP noise
elevates instability, as shown by RP value variance, causing larger gradient norms and lower accuracy.

FedAvg, FedProx, FedAdagrad, FedYogi, FedSAM, and FedASAM.

As illustrated in Figure 21, Figure 22, Figure 23, Figure 24, Figure 25, Figure 30, Figure 31, Figure 32, Figure 33, Figure 26,
Figure 27, Figure 28, and Figure 29, ADAPT-FED demonstrates robust convergence in settings with data heterogeneity
(α = 0.3). This performance is indicative of the adaptive learning rate mechanism within ADAPT-FED, which fine-tunes
the updates based on the observed instability and heterogeneity levels, thereby enhancing the convergence rate.

ADAPT-FED utilizes an innovative adaptive learning rate strategy that dynamically adjusts based on the model’s performance
from one iteration to the next. This approach addresses not only the variability introduced by differential privacy but also
the challenges posed by non-IID data across clients. Unlike traditional methods that apply uniform updates, ADAPT-FED
tailors the learning rates to mitigate the impact of high gradient variances and ensures consistent learning progress.

Despite the advancements in FL algorithms to handle heterogeneous data and privacy constraints, our results reveal
a persistent challenge in Figure 23, Figure 24, Figure 32, Figure 33, Figure 28, Figure 29: stability under high data
heterogeneity and strict privacy conditions. ADAPT-FED’s adaptive learning rate mechanism, designed to stabilize the
training process, struggles against the compounded noise introduced by increased differential privacy levels. The higher
the σ2, the more pronounced are the oscillations in the loss, suggesting that differential privacy noise can significantly

Table 4. Generalization performance of ADAPT-FED versus baseline algorithms based on 10 clients across three datasets: (a) CIFAR10,
(b) CIFAR100, and (c) UTK, respectively, ηo = 0.1. ADAPT-FED outperforms the baseline algorithms in terms of generalization
performance across datasets.

CIFAR-10 CIFAR-100 UTK

Algorithm Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3)

0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03

FedAvg 58.76 53.72 47.31 41.91 74.55 70.18 64.76 59.68 37.73 37.03 33.94 30.89 41.21 40.91 37.48 34.84 64.11 64.11 55.18 54.98 78.89 78.89 64.87 64.83
FedSAM 57.93 58.08 58.67 58.74 74.80 74.18 74.61 74.90 37.43 38.49 38.57 38.17 42.18 42.64 42.81 43.89 73.28 73.28 73.58 73.35 79.06 79.06 79.10 78.83
FedASAM 59.09 58.78 58.74 58.74 75.40 74.91 74.51 74.51 38.56 37.83 37.99 37.99 43.39 43.12 43.28 43.28 73.31 73.31 74.07 74.07 78.63 78.63 79.48 79.48
FedProx 59.86 55.27 49.14 42.82 73.54 69.48 64.36 59.91 37.90 36.37 34.30 30.97 42.36 40.66 36.87 34.84 65.42 65.42 55.05 54.68 71.40 71.40 57.03 56.65
FedAdagrad 58.76 53.72 47.31 41.91 74.55 70.18 64.76 59.68 37.73 37.03 33.94 30.89 41.21 40.91 37.48 34.84 64.11 64.11 55.18 54.98 71.06 71.06 56.38 56.56
FedAdam 58.76 53.72 47.31 41.91 74.55 70.18 64.76 59.68 37.73 37.03 33.94 30.89 41.21 40.91 37.48 34.84 64.11 64.11 55.18 54.98 78.89 78.89 64.87 64.83
FedYogi 58.76 53.72 47.31 41.91 74.55 70.18 64.76 59.68 37.73 37.03 33.94 30.89 41.21 40.91 37.48 34.84 64.11 64.11 55.18 54.98 78.89 78.89 64.87 64.83
ADAPT-FED (ours) 63.02 65.18 65.39 65.83 80.46 81.33 81.24 81.75 51.44 53.59 54.26 54.34 58.18 61.25 61.38 60.39 75.05 75.05 75.05 74.31 86.85 86.85 86.49 86.86
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Figure 11. Correlation of DP noise with training instability in a 10-client UTK setup (α = 0.05 non-iid). Increased DP noise elevates
instability, as shown by RP value variance, causing larger gradient norms and lower accuracy.
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Figure 12. Correlation of DP noise with training instability in a 10-client CIFAR100 setup (α = 0.3 non-iid, η0 = 0.1). Increased DP
noise elevates instability, as shown by RP value variance, causing larger gradient norms and lower accuracy.

overshadow the underlying data distribution, misleading the adaptive learning rate adjustments. The high data heterogeneity
exacerbates the difficulty of achieving stable convergence. The variability in local datasets leads to highly divergent local
model updates, which, when aggregated, can destabilize the global model learning process. This issue is highlighted in our
experiments, where even ADAPT-FED shows fluctuations in convergence under extreme conditions.

D.3. Training Stability Analysis

We evaluate the training stability of ADAPT-FED in comparison to various baseline FL algorithms. These experiments
are conducted across the CIFAR10, CIFAR100, and UTK datasets, with emphasis on differential privacy settings and data
heterogeneity.

Figure 34, Figure 35, Figure 36, Figure 37, Figure 38, Figure 42, Figure 43, Figure 44, Figure 39, Figure 40 and
Figure 41, illustrate the relative progress (RP) across 200 training round under varying conditions. These figures capture the
effectiveness of ADAPT-FED’s adaptive learning rate mechanism in enhancing training stability compared to traditional FL
approaches. This strategy significantly reduces the oscillations in RP , particularly evident in scenarios with high differential
privacy levels and heterogeneous data distributions. In Figure Figure 3, ADAPT-FED maintains a lower variance in RP
compared to baselines like FedAvg and FedProx, indicating more consistent progress and reduced training disruptions despite
the introduction of noise through differential privacy. Figure 34, Figure 35, Figure 36, Figure 37, Figure 38, Figure 42,
Figure 43, Figure 44, Figure 39, Figure 40 and Figure 41, highlight ADAPT-FED’s ability to sustain lower variability in
RP even under severe data heterogeneity, reflecting its capacity to adapt to heterogeneous data distributions effectively.
ADAPT-FED employs an adaptive learning rate that dynamically adjusts based on the observed gradient norms.

While baseline algorithms exhibit increased RP fluctuations, indicating struggles with gradient noise and data heterogeneity,
ADAPT-FED demonstrates a markedly smoother convergence curve. This distinction demonstrates the limitations of SOTA
methods that do not account dynamically for changing gradient scales, often leading to inefficient learning rates that either
overstep or underutilize the learning potential of the model.
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Figure 13. Correlation of DP noise with training instability in a 20-client CIFAR100 setup (α = 0.3 non-iid, η0 = 0.1). Increased DP
noise elevates instability, as shown by RP value variance, causing larger gradient norms and lower accuracy.
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Figure 14. Correlation of DP noise with training instability in a 20-client CIFAR100 setup (α = 0.3 non-iid, η0 = 0.04). Increased DP
noise elevates instability, as shown by RP value variance, causing larger gradient norms and lower accuracy.

E. Additional Ablation Study
Here, we provide the additional experimental analyses that are dropped due to the limited space of the main paper. These
analyses include the plots for ADAPT-FED’S learning rate scheduling dynamics.

E.1. Learning Rate Scheduling Dynamics Analysis

Figure 46 illustrates the behavior of the learning rate η for ADAPT-FED across different levels of differential privacy (σ2)
during the training process. These dynamics are important in understanding the adaptive nature of ADAPT-FED’s learning
rate adjustment mechanism.

As shown in Figure 46, the learning rate sharply decreases within the initial rounds, regardless of the differential privacy
setting. This rapid decay is part of ADAPT-FED’s strategy to quickly converge to a stable state before refining its model
parameters under decreasing learning rates, thereby mitigating the risk of overshooting minima due to high initial rates.

Table 2 reveals that despite the aggressive reduction in learning rate, ADAPT-FED consistently outperforms SOTA baselines
in terms of generalization across all datasets when starting from a high initial learning rate ηk,o. This demonstrates the
effectiveness of ADAPT-FED’s adaptive learning rate mechanism, which, although it starts high and decays rapidly, manages
to maintain superior learning quality by optimally balancing exploration and exploitation phases during training.
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Figure 15. Correlation of DP noise with training instability in a 10-client CIFAR100 setup (α = 0.05 non-iid). Increased DP noise
elevates instability, as shown by RP value variance, causing larger gradient norms and lower accuracy.

Figure 16. Noniid partition used in (Yurochkin et al., 2019) and (Wang et al., 2020a). The number of CIFAR10, CIFAR1OO, and UTK
data points and class proportions are unbalanced. Samples will be partitioned into 10 clients by sampling α = 0.3.

Figure 17. Noniid partition used in (Yurochkin et al., 2019) and (Wang et al., 2020a). Number of CIFAR10, CIFAR1OO, and UTK data
points and class proportions are unbalanced. Samples will be partitioned into 10 clients by sampling α = 0.05.

Figure 18. Noniid partition used in (Yurochkin et al., 2019) and (Wang et al., 2020a). The number of CIFAR10, CIFAR1OO, and UTK
data points and class proportions are unbalanced. Samples will be partitioned into 20 clients by sampling α = 0.3.
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Figure 19. Noniid partition used in (Yurochkin et al., 2019) and (Wang et al., 2020a). The number of CIFAR10, CIFAR1OO, and UTK
data points and class proportions are unbalanced. Samples will be partitioned into 20 clients by sampling α = 0.05.
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Figure 20. Convergence of the training loss of ADAPT-FED and SOTA algorithms on 10 clients (CIFAR10, CIFAR100, and UTK
noniid-ness, α = 0.3) with DP σ2 = 0.0, ηo = 0.04.
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Figure 21. Convergence of the training loss of ADAPT-FED and baseline algorithms on 10 clients (CIFAR10 noniid-ness α = 0.3,
η0 = 0.1) across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more
robust convergence.
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Figure 22. Convergence of the training loss of ADAPT-FED and baseline algorithms on 20 clients (CIFAR10 noniid-ness α = 0.3,
η0 = 0.1) across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more
robust convergence.

21



Submission and Formatting Instructions for ICML 2024

0 25 50 75 100125150175200
# Rounds

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Lo
ss

FedAvg
FedSAM
FedASAM

FedProx
FedAdagrad
FedAdam

FedYogi
ADAPT-FED

0 25 50 75 100125150175200
# Rounds

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Lo
ss

FedAvg
FedSAM
FedASAM

FedProx
FedAdagrad
FedAdam

FedYogi
ADAPT-FED

0 25 50 75 100125150175200
# Rounds

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Lo
ss

FedAvg
FedSAM
FedASAM

FedProx
FedAdagrad
FedAdam

FedYogi
ADAPT-FED

Figure 23. Convergence of the training loss of ADAPT-FED and baseline algorithms on 20 clients (CIFAR10 noniid-ness α = 0.3,
η = 0.04) across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more
robust convergence.
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Figure 24. Convergence of the training loss of ADAPT-FED and baseline algorithms on 10 clients (CIFAR10 noniid-ness α = 0.05,
η0 = 0.1) across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more
robust convergence.
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Figure 25. Convergence of the training loss of ADAPT-FED and baseline algorithms on 20 clients (CIFAR10 noniid-ness α = 0.05,
η0 = 0.1) across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more
robust convergence.
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Figure 26. Convergence of the training loss of ADAPT-FED and baseline algorithms on 10 clients (UTK noniid-ness α = 0.3, η0 = 0.1)
across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more robust
convergence.
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Figure 27. Convergence of the training loss of ADAPT-FED and baseline algorithms on 20 clients (UTK noniid-ness α = 0.3, η0 = 0.1)
across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more robust
convergence.
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Figure 28. Convergence of the training loss of ADAPT-FED and baseline algorithms on 10 clients (UTK noniid-ness α = 0.05) across
three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more robust convergence.
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Figure 29. Convergence of the training loss of ADAPT-FED and baseline algorithms on 20 clients (UTK noniid-ness α = 0.05) across
three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more robust convergence.
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Figure 30. Convergence of the training loss of ADAPT-FED and baseline algorithms on 10 clients (CIFAR100 noniid-ness α = 0.3,
η0 = 0.1) across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more
robust convergence.
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Figure 31. Convergence of the training loss of ADAPT-FED and baseline algorithms on 20 clients (CIFAR100 noniid-ness α = 0.3,
η0 = 0.1) across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more
robust convergence.
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Figure 32. Convergence of the training loss of ADAPT-FED and baseline algorithms on 10 clients (CIFAR100 noniid-ness α = 0.05)
across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more robust
convergence.
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Figure 33. Convergence of the training loss of ADAPT-FED and baseline algorithms on 20 clients (CIFAR100 noniid-ness α = 0.05)
across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively.ADAPT-FED exhibits faster and more robust
convergence.
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Figure 34. Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients (CIFAR10 noniid-ness α = 0.3, η0 = 0.1)
across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively. ADAPT-FED exhibits more stable convergence
compared to baselines.
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Figure 35. Stability of the training loss of ADAPT-FED and baseline algorithms on 20 clients (CIFAR10 noniid-ness α = 0.3, η0 = 0.1)
across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively. ADAPT-FED exhibits more stable convergence
compared to baselines.
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Figure 36. Stability of the training loss of ADAPT-FED and baseline algorithms on 20 clients (CIFAR10 noniid-ness α = 0.3, η0 = 0.04)
across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively. ADAPT-FED exhibits more stable convergence
compared to baselines.
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Figure 37. Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients (CIFAR10 noniid-ness α = 0.05, η0 = 0.1)
across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively. ADAPT-FED exhibits more stable convergence
compared to baselines.
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Figure 38. Stability of the training loss of ADAPT-FED and baseline algorithms on 20 clients (CIFAR10 noniid-ness α = 0.05, η0 = 0.04)
across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively. ADAPT-FED exhibits more stable convergence
compared to baselines.
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Figure 39. Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients (UTK noniid-ness α = 0.3, η0 = 0.1)
across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively. ADAPT-FED exhibits more stable convergence
compared to baselines.
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Figure 40. Stability of the training loss of ADAPT-FED and baseline algorithms on 20 clients (UTK noniid-ness α = 0.3, η0 = 0.1)
across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively. ADAPT-FED exhibits more stable convergence
compared to baselines.
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Figure 41. Stability of the training loss of ADAPT-FED and baseline algorithms on 20 clients (UTK noniid-ness α = 0.05, η0 = 0.1)
across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c) σ2 = 0.02, respectively. ADAPT-FED exhibits more stable convergence
compared to baselines.
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Figure 42. Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients (CIFAR100 noniid-ness α = 0.3, η0 = 0.1).
ADAPT-FED exhibits more stable convergence compared to baselines.
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Figure 43. Stability of the training loss of ADAPT-FED and baseline algorithms on 20 clients (CIFAR100 noniid-ness α = 0.3, η0 = 0.1).
ADAPT-FED exhibits more stable convergence compared to baselines.
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Figure 44. Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients (CIFAR100 noniid-ness α = 0.05,
η0 = 0.1). ADAPT-FED exhibits more stable convergence compared to baselines.
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Figure 45. Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients across three datasets (CIFAR10, CIFAR100,
and UTK, noniid-ness α = 0.3, σ2 = 0.0), ηo = 0.04.
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Figure 46. Behavior of η for CIFAR10, CIFAR100, and UTK
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