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Figure 1: Illustration of the Collaborative MR Image Sorting Application. Left and Middle: First-person perspec-
tive of the application interface as experienced by two participants. Right: Third-person view showing participants
interacting with the application in a shared MR environment.

ABSTRACT

Mixed Reality (MR) enables rich, embodied collaboration,
yet it’s uncertain if sensor and system-logged behavioral sig-
nals capture how users experience that collaboration. This
disconnect stems from a fundamental gap: behavioral sig-
nals are observable and continuous, while collaboration is
interpreted subjectively, shaped by internal states like pres-
ence, cognitive availability, and social awareness. Our core
insight is that sensor signals serve as observable manifes-
tations of subjective experiences in MR collaboration, and
they can be captured through sensor data such as shared
gaze, speech, spatial movement, and other system-logged
performance metrics. We propose the Sensor-to-Subjective
(S2S) Mapping Framework, a conceptual model that links
observable interaction patterns to users’ subjective percep-
tions of collaboration and internal cognitive states through
sensor-based indicators and task performance metrics. To
validate this model, we conducted a study with 48 par-
ticipants across 12 MR groups engaged in a collaborative
image-sorting task. Our findings show a correlation be-
tween sensed behavior and perceived collaboration, particu-
larly through shared attention and proximity.

Index Terms: Mixed Reality, Collaboration, Perception

*Yasra Chandio and Diana Romero contributed equally to this
work as co-first authors.

1 INTRODUCTION

Collaboration within mixed reality (MR)1 environments is
becoming increasingly prevalent across domains such as ed-
ucation, design, healthcare, and remote work [15]. This
trend stems from MR’s unique capabilities to seamlessly
integrate physical and virtual realms, enabling co-located
and remote users to interact through shared digital content.
However, as these systems evolve to become more intricate,
immersive and integral to collaborative work, researchers
have explored various aspects of MR collaboration, includ-
ing the effects of gaze, gesture sharing, and virtual replicas
on presence and cognitive load [4, 56], as well as domain-
specific applications such as radiography training [64, 9].

Despite these advances, a fundamental challenge per-
sists: How can we effectively understand the quality of col-
laboration that unfolds within these environments? Mod-
ern MR systems generate extensive behavioral data through
system logs and embedded sensors, capturing where users
look [44], how they move [29], and when they speak [48],
yet these signals often provide only limited insights into
users’ internal states [68]. The critical gap in current re-
search is understanding whether such sensor data meaning-
fully reflect participants’ actual collaborative experiences or
whether important dimensions of collaboration remain un-
detected by current measurement approaches.

This paper takes a human-centered approach to this ques-
tion. Rather than treating collaboration as an externally de-
fined construct, we focus on how participants themselves
perceive their group interactions. In doing so, we recognize
that collaboration is not merely a behavioral pattern but a
subjective [38], socially mediated experience [42]. For MR
systems to effectively support teamwork, we need methods

1MR aligns with Milgram’s reality-virtuality continuum [33],
closely related to Augmented Reality (AR), where virtual elements
seamlessly integrate with the real world.



that not only detect and interpret this experience but also
bridge the gap between observable actions and users’ per-
ceptions of their collaborative interactions.

To explore this, we study a collaborative MR task us-
ing a multi-perspective approach involving 48 participants
grouped into 12 teams of four. First, we analyze sensor-
derived indicators of group interaction, including gaze-
based shared attention, conversation dynamics through au-
dio, and spatial proximity, which can be captured through
embedded sensing in MR headsets [68, 65]. Second, we ex-
amine task performance using system logs, measuring tim-
ing, interaction patterns, and decision changes throughout
the collaboration. Finally, we assess subjective experience
through post-exposure questionnaires that capture partici-
pants’ perceptions of group dynamics as well as their indi-
vidual sense of presence and cognitive effort.

Together, these perspectives allow us to ask: Do observ-
able group interaction patterns, as captured by MR head-
sets, reflect how participants experience collaboration?
We formalize this inquiry through three research questions:

RQ1: Do objective sensor-based indicators of group be-
havior align with participants’ subjective perceptions
of collaboration in MR?

RQ2: How do sensor-based behavior indicators relate to
task performance in a collaborative MR task?

RQ3: What insights can we derive about group behavior in
MR from objective sensing and individual subjective
experiences?

2 BACKGROUND AND RELATED WORK

2.1 Group Behavior in Immersive Environments
Understanding collaborative group behavior has evolved
from traditional settings to MR environments, where users
interact in novel ways across co-located, remote, and hy-
brid configurations. Group behavior, all forms of interac-
tion and activity within a group [19], and collaboration, de-
fined as the intentional, coordinated effort among members
to work together toward shared goals [19], takes distinctive
forms in MR contexts due to unique factors including free
movement [40], embodied gesture [23], co-presence [51],
and shared spatial context [39]. Research has examined
MR collaboration through interface design [6], task coor-
dination [66], communication patterns [3], and trust devel-
opment [5], yet it generally relies on external observations
or outcomes rather than internal experiences of the partici-
pants. This creates a critical knowledge gap on how partici-
pants’ internal experiences align with the observable behav-
iors logged by MR systems.

2.2 Sensor-Based Indicators of Group Behavior
Sensor-based methods across ubiquitous and immersive
computing now characterize group behavior through multi-
ple data streams (gaze, voice, motion, location) without re-
lying on external observation or self-reporting. Remote col-
laboration systems, such as TeamSense [68] and CoCo [46]
monitor nonverbal cues to track group cohesion, while wear-
able computing approaches assess synchrony and proximity
patterns during collaborative tasks [54]. In immersive envi-
ronments, headset-embedded sensors measure participation
and spatial orientation, and researchers demonstrate how
gaze and object manipulation reflect collaboration quality in
VR tasks [65] and employ volumetric capture to assess ges-
ture alignment in MR learning contexts [26, 22]. Despite
these advances, most existing approaches emphasize either
performance outcomes or structural interaction properties
(such as coordination patterns and role distribution) without
examining their relationship to participants’ subjective ex-
periences. The critical question of whether sensor-based be-
havioral indicators meaningfully reflect users’ internal per-

ceptions of collaboration remains largely unexplored, par-
ticularly in co-located MR tasks using commercial headsets.

2.3 Subjective Indicators of Group Behavior
Subjective self-report surveys remain central to under-
standing how people experience collaboration. Standard-
ized tools, such as post-task surveys, presence question-
naires [62, 47], and cognitive load surveys [20], are widely
used in the Human-Computer Interaction (HCI) literature to
gauge how users evaluate, interpret, and internalize virtual
experiences and their experience. Previous work has used
these subjective measures to assess collaborative quality
in various contexts, including team cohesion in distributed
work [68], perceived social presence in remote collabora-
tion [41], and mutual understanding during joint problem-
solving [67]. Researchers have used self-report data in ed-
ucational settings to evaluate perceived contribution equity
and satisfaction with group outcomes [61]. Similarly, stud-
ies of collaborative design have incorporated subjective as-
sessments of idea sharing and creative synergy [36].

Despite rich insights, these subjective measures are rarely
systematically linked to sensor-based behavioral data. This
disconnect raises questions about whether group behaviors
in MR environments actually reflect users’ internal collabo-
rative experience. If MR systems can detect where users are
looking, who is speaking, and how close they are, can those
signals be meaningfully interpreted as indicators of subjec-
tive collaborative quality? Do behavioral patterns track with
subjective perception or challenge our assumptions about
collaboration? Addressing these questions requires exam-
ining the relationship between sensor data and human expe-
rience in collaborative MR contexts.

To this end, in this paper, we study how sensor-based in-
dicators of group behavior relate to subjective perceptions
in collaborative MR. Instead of treating system-logged sig-
nals as stand-alone metrics, we treat them as potential re-
flections of collaborative experience, positioning this align-
ment as a core concern for human-centered sensing in MR.

3 APPROACH

3.1 Theoretical Foundation
We conceptualize how group behavior can be interpreted by
combining interaction traces captured through sensors and
system data with subjective user reports.

3.1.1 Subjective Perception of Collaboration
Collaboration is not merely the accumulation of actions per-
formed by individuals; it is shaped by how each user inter-
prets, feels, and reflects on those interactions. Collabora-
tion is what group members come to understand and feel
about what they did together. In MR, where social cues,
task progress, and attention are distributed across a blend
of physical and virtual elements, this perception is espe-
cially complex. To understand collaboration in such set-
tings, we must look not only at visible behavior but also
at the subjective interpretations users form before, during,
and after interaction. These interpretations are shaped by
both individual-level experience and group-level awareness,
which together constitute what we refer to in this paper as
subjective perception of collaboration. As such, we treat
the subjective perception of collaboration as a layered con-
struct, one that blends individual experiences with group-
level awareness. This section unpacks that construct and
explains how we operationalize it in our study.
Individual-Level Experience. Each user in a collabora-
tive MR task brings their own perspective on the interac-
tion. This perspective is filtered through their sense of pres-
ence [50], cognitive availability [52], and personal contri-
bution [12]. These factors are not passive background states
but directly influence how users perceive and make sense of



social interaction [41]. At its most foundational, collabora-
tion begins with how individuals experience being part of a
group in each moment. In immersive settings, this includes:

• Presence: the degree to which a user feels immersed
and situated (“being there”) in the virtual environment is
the foundational phenomenon. Presence affects how re-
sponsive or attuned a user is to the behaviors of others.
Prior research has shown that presence increases sensitiv-
ity to others’ gaze, gesture, and speech, and enhances the
salience of social cues [49, 47]. In our context, a greater
presence may facilitate awareness of others’ engagement,
enabling more accurate reflections on group behavior.

• Cognitive Load: often understood as the mental effort re-
quired to manage task complexity, modulates how much
a user can track, interpret, and respond to others. A men-
tally taxed user may overlook subtle coordination signals,
while a cognitively available user may notice shifts in at-
tention, interruptions in conversation, or emerging group
patterns [13]. In this way, we hypothesize that cognitive
load shapes not just task performance [24], but the per-
ceived quality of collaboration. Higher cognitive load may
inhibit attention to group interactions or reduce perceived
performance in the collaboration [55].

• Contribution Awareness: how much a user feels
other members contributed meaningfully to the group’s
progress. This involves awareness of others’ actions and
roles within the group. This acts as a bridge between per-
sonal effort and social perception. It reflects both internal
judgment and observed input from peers. In immersive
collaboration, where explicit roles may not be assigned,
contribution awareness can become a key proxy for how
individuals interpret participation and balance.
These individual experiences are not isolated metrics.

They are influenced by how users interpret others’ behav-
iors in real time. They form the perceptual and cognitive
foundation on which group-level reflections are built.
Group-Level Reflection. While the MR system tracks each
user individually, users themselves develop relational inter-
pretations: Were we focused on the same thing? Did we
support each other’s efforts? Did we function as a group?
These are not directly observable but accessible through
post-task subjective reflection [53]. We capture these in-
terpretations through four key constructs:

• Shared Attention Awareness reflects user’ recognition
that others are attending to the same virtual elements.
This perception is not only a sign of visual conver-
gence, but it also reflects shared intention and awareness,
which are foundational for coordination and meaning-
making [34].

• Conversational Support measures whether dialogue with
others helped a user understand the task and contribute
effectively. It captures the conversation and its function:
Did it clarify? Did it invite participation? This reflects
group cohesion and mutual scaffolding [18].

• Proximity Impact probes how user felt physical closeness
(as mediated by MR headsets) influenced collaboration.
Prior work suggests that co-located interaction, being
physically near others, improves responsiveness. [17].

• Group Collaboration captures users’ holistic sense of
how well the team worked together. This reflects an in-
tegration of observed behaviors, internal judgments, and
implicit comparison to collaborative expectations [16].

Though collected individually, these measures represent
users’ interpretations of the group. They are formed through
the lens of each user’s own state, engagement, and task in-
volvement. In other words, they are subjective readings of
an inherently social phenomenon.

3.1.2 Objective Perception of Collaboration
While subjective reports offer insight into how collaboration
is experienced, immersive systems provide a complemen-
tary channel: detailed logs of where users look, how they
move, and when they speak. These objective and sensor-
based indicators, derived from sensor data and system in-
strumentation, allow us to capture collaboration not as it is
reported but as it unfolds. Although these are individual-
level measurements, they are not isolated; they reflect what
each user does in relation to others in the group. The same
user performing the task alone would not produce the same
sensor traces. These data are fundamentally shaped by in-
teraction: who a user looks at, how close they are to others,
and when they speak or remain silent. Each signal gains
meaning only in the context of collective activity. The cen-
tral challenge lies in interpreting these distributed signals
in ways that meaningfully reflect group-level coordination.
Our system logs three core types of interaction indicators,
chosen for their theoretical grounding in studies of group
behavior [65, 68] and practical availability from commodity
MR headsets such as Meta Quest Pro [32], Hololens 2 [1],
and Apple Vision Pro [2]:

• Conversation and speech activity has been frequently
employed as a key metric for examining behavior within
small groups in the fields of psychology, anthropology,
and traditional observational studies [28, 10]. Even re-
cent work in the literature utilizing ubiquitous sensors to
understand group behavior continues to emphasize the
significance of this metric [27]. Studies have demon-
strated that the proportion of conversation among humans
varies across different media, such as virtual reality and
desktop environments [65]. Given that MR immersive
experiences offer a unique modality for human interac-
tion with virtual objects while remaining grounded in the
physical world, capturing conversation and speech met-
rics is valuable for gaining insights into group behav-
ior. To this end, speech activity is logged via audio data
collected from the microphones embedded in the MR
headsets to capture conversation metrics. Rather than
transcribing content, we focus on conversational metrics:
speaking time distribution, number of turns, and partic-
ipation variance across group members. These features
have been shown to correlate with dominance and con-
versational fluency in other settings [37].

• Shared attention, a cognitive process involving the abil-
ity of individuals to focus with a social partner on a
shared object of interest for either intentional or so-
cial purposes, has been extensively studied in the liter-
ature [7, 34]. Various works in the literature have consis-
tently highlighted the critical role of shared attention in
facilitating cooperation and social bonding [63]. Given
its pivotal role in collaborative behavior, the significance
of shared attention in the context of computer-supported
collaborative work has been a subject of considerable
exploration [67]. Many studies have used gaze aware-
ness for automatic shared attention detection. Building
on this, we detect shared attention episodes by analyz-
ing overlapping gaze vectors on the same virtual object
using eye-tracking data from MR headset sensors. This
operationalizes shared attention [34] in a continuously
measured, time-resolved, and automatically logged way.
While shared attention is inherently social, it is not ex-
plicitly communicated; users may not be aware of it. We
aim to assess whether sensed shared attention reflects
users’ perception of collaboration.

• Proximity plays a critical role in collaboration and group
interactions. Prior work in organizational behavior has
shown that closer physical proximity among team mem-
bers enhances knowledge exchange, creativity, and team-



work quality [60]. In co-located collaborative scenarios,
groups tend to perform better when members are phys-
ically near one another rather than dispersed [21, 59].
Additionally, studies have observed that individuals of-
ten move closer to those with whom they share stronger
social bonds [14]. Building on these insights, we capture
proximity as a scalar measure, specifically, the average
pairwise distance between users, using positional data
from each user’s headset in a shared coordinate frame.
We deliberately abstract away from directionality in

terms of proximity and conversation (e.g., who was clos-
est to whom or who spoke to whom) and instead focus on
group-level distributions. This is because our interest lies in
capturing whether everyone engaged with everyone, not in
identifying dominant or passive roles. Prior work has shown
that proximity itself (regardless of direction) is a meaningful
cue of social engagement in co-located settings [14]. More-
over, our subjective measures focus on perceived group col-
laboration, which is more likely influenced by general close-
ness than specific spatial arrangements. Prior work sup-
ports this approach, showing that evenly distributed prox-
imity and turn-taking indicate group cohesion [68].

In addition to sensor-based metrics, we log task-relevant
interactions that reflect how users engage with the collab-
orative activity over time. These include interaction fre-
quency, object manipulation patterns, and changes to pre-
viously completed actions. For example, we track how of-
ten each user interacts with shared content, how frequently
prior actions are revisited or overridden, and the number
of unique configurations a group explores before reaching
a consensus. These metrics offer a view into participation
distribution, coordination dynamics, and decision negotia-
tion, which are key elements of collaborative processes. We
also record overall task completion time, which serves as a
high-level indicator of successful collaboration.

3.2 Individual Reflections and Collaboration

A central question in our study is how these individual per-
ceptions of collaboration relate to the behavioral traces we
can sense and log. We do not assume that users’ subjec-
tive responses can be directly averaged into a “true” group
state. Instead, we examine the distribution of perceptions
across the group: Are they aligned or divergent? Are cer-
tain individuals systematically disengaged or overloaded?
These variations matter because they signal different inter-
pretations of what collaboration felt like to the user. By
examining the relationship between sensor-based indicators
(§3.1.2) and subjective reports of internal individual percep-
tion (§3.1.1), we can start to ask: Do shared gaze events
map onto users’ awareness of shared attention? Does higher
proximity align with perceptions of a sense of group co-
hesion? Does a more balanced distribution of interactions
align with users’ perception that they and their peers con-
tributed meaningfully to the task?

Importantly, the subjective states are not outcomes of the
sensor data; they are independent yet complementary ac-
counts of collaboration. Our framework treats them as the
interpretive anchor against which we examine the dynam-
ics captured by the system. This allows us to understand
what groups did and how collaboration was experienced in
the future, yielding insight into how systems might better
reflect, support, or adapt to group behavior in MR environ-
ments. Together, these indicators form a continuous stream
of behavioral data interpreted as isolated features but as ob-
servable patterns of interaction that may or may not align
with how users interpret collaboration subjectively. Our
goal is not to classify groups as ”effective” or “cohesive”
based on signals but to assess where and how the system’s
behavioral observations reflect users’ own perspectives.

Sensor-Based
Indicators

Subjective
Perception

Task 
Performance

Reflective
Mapping

Interaction
Trace

Exploratory
Association

Figure 2: Sensor-to-Subjective Mapping Framework (S2S)

3.3 Sensor-to-Subjective Mapping Framework
To structure our investigation, we introduce the Sensor-to-
Subjective Mapping Framework (S2S) in Figure 2, which
conceptualizes how collaborative group behavior in MR can
be interpreted across three perspectives: observable system-
level interaction traces (sensor-based indicators), emergent
outcomes from interaction (task performance metrics), and
post-task reflective accounts from users (subjective percep-
tions). This framework does not assume that one perspective
directly determines the other; it treats each as a complemen-
tary lens that captures different facets of collaboration.

3.3.1 From Signals to Perception
The first relationship examines whether behavioral signals
captured through sensors reflect users’ internal interpreta-
tions of collaboration. We refer to this relationship as re-
flective interaction mapping. For instance, we ask whether
shared gaze events, as measured by eye-tracking, corre-
spond to a user’s sense that the group had shared atten-
tion. Similarly, do balanced patterns in voice activity align
with reported conversational support in the post-hoc survey?
This connection motivates our first set of hypotheses, which
examine whether subjective perceptions of collaboration are
reflected in the observable sensor-based measures.
3.3.2 Interaction Traces and Performance
The second relationship focuses on how system-logged be-
haviors (such as how frequently users move shared objects,
override prior placements, or coordinate gaze and position)
relate to overall group performance. We refer to this con-
nection as trace-to-performance alignment. Here, we test
whether groups exhibiting more balanced interaction pat-
terns, frequent shared attention, or tighter spatial coordina-
tion complete the task more efficiently or with fewer revi-
sions. These hypotheses assess whether sensor-based data
traces align with more fluent or organized group outcomes.

3.3.3 Subjective Perception to Task Performance
Finally, we investigate whether users’ internal experiences
correspond to observable group-level performance metrics.
We refer to this relationship as a subjective influence on per-
formance. While individual states, such as presence and
cognitive load, are not directly measured through sensors,
they shape how users engage with others and respond to col-
laborative demands. For example, users who report lower
cognitive load may have been more available to coordinate
or contribute [13], which could result in more balanced par-
ticipation and faster task completion. This mapping sup-
ports hypotheses that investigate whether the way users feel
about their own experience or the group as a whole is mean-
ingfully associated with collaborative outcomes.
3.4 Hypotheses
Together, the three relationships defined by S2S framework
guide the structure of our hypotheses. We will focus our
experimental design on testing the following hypotheses:

H1: Participants’ subjective perception of collaboration is
reflected in sensor-based indicators (addressing RQ1).

H1.1: Higher perceived collaboration is reflected in
more frequent shared attention events.



H1.2: Higher perceived conversation support is reflected
in more balanced conversations among group members.

H2: Collective group performance is reflected in sensor-
based indicators (addressing RQ2).

H2.1: Groups with more evenly shared task interactions
completed the task faster.

H2.2: Shorter task completion time is reflected in more
frequent shared attention events.

H3: Participants’ individual experiences are reflected in
sensor-based indicators (addressing RQ3).

H3.1: Higher individual perceived presence and percep-
tion of contribution is reflected in more frequent shared
attention events among group members.

H3.2: Higher individual presence is reflected in closer
proximity among group members.

H3.3: Lower individual cognitive load is reflected in
evenly distributed task interactions within the group.

4 USER STUDY
4.1 Participants
We recruited 60 participants; data from 12 participants were
discarded due to technical issues, resulting in 48 participants
being included in the analysis. Participants were allowed to
form their own groups, or, if preferred, the research team
randomly assigned them to a group. In total, 12 groups com-
pleted the study. In similar research on collaborative behav-
ior involving small groups, the group is typically defined as
having three or more members [58]; in our study, we formed
a group with 4 members. Prior studies have revealed pat-
terns of conversation, interaction, and coordination within
groups of four in both desktop and virtual reality environ-
ments [65]. By adopting a group size of four participants,
we aimed to create a richer collaborative environment, cap-
turing the complexities of group behavior not as evident in
smaller groups [3, 35]. Participants’ ages ranged from 21 to
42, with a mean age of 24. A summary of the participant
demographics can be seen in Table 1. All participants pro-
vided verbal informed consent. Each participant had normal
or corrected-to-normal vision. The institution’s ethics com-
mittee approved the study.

4.2 Materials
To capture sensor data on user interactions, we used the
Meta Quest Pro [32]. The integrated sensors enabled audio
recording, eye-tracking, six-degrees-of-freedom (6 DoF) si-
multaneous localization and mapping (SLAM) tracking, and
MR capabilities. The collaborative application is developed
using Unity with Meta XR packages [31]. Unity and Meta
XR API’s are used in custom scripts to record the audio, lo-
cation, gaze-object intersections, and user interactions with
virtual objects. For precise manipulation of virtual ob-
jects, we use the controller integrated with the Meta Quest
Pro [32]. The interaction recording and tracking is validated
by others [43]. Participants were invited to a shared lab
room with a designated 10 ft×5 ft space cleared of ma-
terials to minimize distractions. They were informed that
they could move freely within this area during the task.

4.3 Experimental Task
This section summarizes the cue, interaction, and feedback
of our collaborative image-sorting task. The study was de-
liberately designed around a single collaborative task un-
der one shared condition, without varying levels of network
stressors or task types. Our goal was not to compare mul-
tiple experimental conditions but to examine the richness
of group behavior in a naturalistic, unconstrained collabo-
rative setting. Prior work has shown that tightly controlled

Table 1: Participant Demographics. The key for frequency:
never/almost never; rarely (< 2 times); occasionally (a few
times); frequently in the past; frequently (> 2 times/month).

Demographics Number of Participants
Gender 36 Male, 8 Female

Frequency of AR Experience
21 Never Used, 14 Rarely, 6 Occasionally,

1 Frequently, 2 Frequently in the past

Frequency of VR Experience
19 Never Used, 13 Rarely, 7 Occasionally,

4 Frequently, 1 Frequently in the past

Frequency of Gaming
4 Never Used, 8 Rarely, 14 Occasionally,

15 Frequently, 3 Frequently in the past

Familiarity to Other Members
25 No Members, 11 One Member,
6 Two Members, 2 Three Members

comparisons can obscure the variability and fluidity of real-
time collaboration in MR environments [65]. Instead, we
focused on collecting high-resolution behavioral data and
subjective reflections during a consistent, shared experience
across groups. Each group of four participants completed
one image-sorting task using the same images and cate-
gories. Participants were instructed to work together to
reach a consensus on the grouping of each image.
4.3.1 Primary Task
Participants were tasked with sorting 28 carefully selected
images from the Open Affective (OASIS) dataset [25]. The
OASIS dataset is comprised of 900 validated images by
over 822 participants for pleasantness and arousal ratings.
The images were selected to represent a range of emotions
while excluding potentially distressing content such as vi-
olence or graphic imagery. Participants were tasked with
sorting the selected images into one of six emotion cate-
gories randomly chosen from Russell’s circumplex model of
affect [45]. These categories included angry, bored, relaxed,
tense, pleased, and frustrated. Image sorting tasks have
been shown to foster decision-making, communication, and
social coordination by building shared mental models and
group alignment [8]. We focus on this collaborative task
marked by asynchronous, flexible participation, where par-
ticipants can contribute and modify inputs independently.
This repeated image-sorting task, involving open-ended dis-
cussions on the emotions elicited by each image, allows us
to observe a dynamic, iterative collaborative process among
the group, where participants achieve a shared goal through
incremental steps and consensus. Each group of four par-
ticipants completed one image-sorting task on the same 28
images and categories. Participants were instructed to work
together as a group to reach a consensus on the label of each
image, with no time limit for completing the task, allowing
participants to engage in deliberate discussion and negoti-
ation. The labels are not placed in a fixed position, allow-
ing participants to organize and use the room space however
they want. The task ends once they inform the researcher
that they all agree with the image groupings.

4.3.2 Virtual Scene and Cues
As shown in Figure 1 (left, headset’s first-person perspec-
tive), all 28 virtual images are scattered around the room,
and all six emotion categories labels (gray virtual plates)
are pasted a little higher than where the images are scat-
tered. Participants can view these images and labels at all
times via their headsets. For participants, the cue to start the
interaction is not defined by the researcher but decided by
each participant which image they want to discuss with the
group to sort. This lack of structure in cues is by design,
as our goal is to observe open and free collaborations with-
out participants taking turns or being directed by the flow
of the virtual scene designed by the researcher. The partici-
pants are assumed to take the cue for virtual interaction from
the other three group members as shown in Figure 1 (right),
where all four participants are physically close, probably ex-
amining the same image and discussing the final label.



Figure 3: Controller gesture for image and label grabbing.

Table 2: Proposed group behavior perception questionnaire
(superscripts refer to the conceptual basis for each item.)

Dimension Question
Contribution
Awareness

How much did you feel other group members con-
tributed during the task?[11]

Joint Attention
Awareness

How often did you feel you were paying attention to
the same virtual object as other participants?[57]

Proximity Impact I felt that my proximity to others affected my collab-
oration during the task.[17]

Conversational
Support

How much did the group conversation help you un-
derstand the task and contribute effectively?[18]

Group Collabora-
tion

The group worked together effectively to complete
the task.[16]

4.3.3 Interaction and Feedback
To sort an image, the participants were asked to physically
move the virtual image near the virtual label. Once the im-
age is pasted close to the label, the image is recorded as
sorted. Participants used a point-and-drag near-interaction
motion with the grip buttons on their left or right controllers
to move an image to the corresponding label. They pointed
the controller at an image, pressed and held the grip button,
and moved the image by guiding the controller. The image
followed the controller’s pointer until the grip button was
released, locking the image in its final position. Participants
could only grab objects within reach and were instructed
to release the grip button to secure an image in place, as
demonstrated in Figure 3. This interaction closely mimics
the physical action of picking up and placing objects. Once
the image was positioned next to the label, it remained sta-
tionary when the grip button was released, providing feed-
back that the image was placed as intended. Only one par-
ticipant could move each object at a time, but they all were
allowed to hold different image objects at the same time.

4.4 Measurements
This section outlines the measures we used to capture group
behavior in the image sorting task, categorized into sen-
sor level, task-related performance metrics, and subjective
measures. At the sensor level we collected data from the
headset using custom scripts. We recorded the audio signal
from the microphone, x,y positions for location, and eye-
tracking data to capture the data for conversation, proximity,
and shared attention as described in §3.1.2.

On the task level, we recorded the various virtual object
interactions, such as the number of virtual image interac-
tions per participant in a group, to count if a participant
grabs a virtual image and then releases it. Throughout the
task, we capture the number of label changes per group to
count the number of times a particular image changes its
label. We also captured distinct groupings for each image
per group to count the distinct labels for each image. For
instance, if Participant A moved an image to label X, partic-
ipant B moved it to label Y, and Participant A moved it back
to X, the image would have three label changes and two dis-
tinct groupings. We also collected high-level performance
metrics, such as completion time. We measured comple-
tion time as the time elapsed from when the first image was
grabbed to when the last image was placed, indicating the
group’s overall time completing the task.

Finally, we collect several subjective measures through
post-exposure surveys after the image sorting task, such

Consent Demographic
Questionnaire

Headset
Fitting

Tutorial
Collaborative

Image
Sorting

Post-game
Questionnaire

Figure 4: User study procedure: Participants provided con-
sent and completed a demographics survey followed by
headset calibration, a tutorial, the main collaborative image
sorting task, and a post-exposure questionnaire.

as presence (subjective feeling of being present in a vir-
tual environment) with the IPQ [47] and PQ [62] ques-
tionnaires, cognitive load through NASA-Task Load Index
(NASA-TLX) [20]2, and perception of the group behavior
through a custom-designed questionnaire. The PQ evalu-
ates factors such as the possibility to act and examine, re-
alism, self-evaluation, and interface quality. The IPQ mea-
sures factors such as spatial and general presence, realism,
and involvement. The presence scores are derived from 33
items (14 IPQ and 19 PQ, the cognitive load score is de-
rived from 5 items from NASA-TLX, and group behavior
from 5 items from our custom-designed survey on a 7-point
scale. We developed a custom questionnaire to measure
participants’ perspectives of how their group interacted, as
shown in Table 2. The proposed group behavior charac-
terization questionnaire assesses key aspects such as contri-
bution awareness, shared attention, proximity impact, con-
versational support, and overall group collaboration. Each
question is informed by established research to ensure rele-
vance to our study’s context.

4.5 Study Procedure
The procedure for the study involved several steps, as shown
in Figure 4. Upon arrival at the laboratory, participants were
given a detailed study information sheet about the study pro-
cedures, data collection, and privacy measures. The admin-
istering researcher also verbally briefed them on this infor-
mation. They were also verbally instructed on the head-
set interactions and controller gestures needed to complete
those interactions required during the tasks and how to per-
form them. The briefing included details about the visual
stimuli used in the experiment, such as their color, shape,
duration, cues, and feedback mechanism for the image-
sorting task. Participants were given ample time to consider
their participation in the study and were asked for their ver-
bal consent. Following the briefing, participants were asked
to fill out a demographic questionnaire, with questions in-
cluding their gender, age, familiarity with technology, and
with other group members.

MR headsets were then distributed to the participants,
and they were instructed to calibrate the focus and fit of the
headset for maximum comfort. Before the main task, partic-
ipants completed a tutorial application with two images and
two categories not included in the main task to prevent learn-
ing effects. This tutorial task aimed to familiarize them with
the task interactions in terms of gestures and get comfort-
able with using the point-and-drag interaction from the con-
troller. Following this, the group proceeded with the main
image sorting task, where they were tasked to sort 28 images
into six different categories. They were informed that there
was no time limit for the task and that the main requirement
was for them to reach a consensus on the image sorting for
the task to end. To encourage a more natural and uncon-
strained group behavior, participants were not informed that
they were being timed or evaluated on their accuracy.

2We are aware of the criticism surrounding the use of NASA-
TLX. We applied it as intended to measure “perceived” cognitive
workload, rather than actual mental load [30].



Table 3: Descriptive and statistical results for PQ, IPQ,
NASA TLX, and Group Behavior Questionnaire. N = 48
Metrics: Mean (µ), Standard Deviation (σ ), Standard
Error (SE), 95% Confidence Interval (CI), 5th/95th Per-
centiles (P5/P95), Min, and Max. The sub-scales are re-
alism (PQ-REAL, IPQ-REAL), possibility to act (ACT), in-
terface quality (IFQUAL), possibility to examine (EXAM),
self-evaluation of performance (EVAL), involvement (INV),
general presence (GP), and spatial presence (SP).

Measure µ σ SE 95% CI P5 P95 Min Max
PQ Subscales

PQ-REAL 5.16 1.10 0.17 4.82–5.49 3.49 6.86 2.86 7
ACT 5.80 0.89 0.13 5.53–6.07 4.50 7.00 3.50 7
IFQUAL 5.29 1.11 0.17 4.95–5.63 3.38 6.67 2.33 7
EXAM 5.67 0.83 0.13 5.42–5.93 4.33 6.95 4.00 7
EVAL 5.81 0.92 0.14 5.53–6.09 4.50 7.00 3.00 7
PQ 5.46 0.75 0.11 5.23–5.69 4.27 6.62 4.11 6.95

IPQ Subscales
INV 3.68 1.53 0.23 3.22–4.15 1.54 6.60 1.00 7
SP 5.07 1.21 0.18 4.71–5.44 2.89 6.77 1.00 7
GP 5.32 1.55 0.23 4.85–5.79 2.00 7.00 1.00 7
IPQ-REAL 4.00 1.21 0.18 3.63–4.37 2.25 5.96 1.25 6.5
IPQ 4.39 1.12 0.17 4.05–4.73 2.52 6.21 1.07 6.5
PQ + IPQ 4.92 0.86 0.13 4.66–5.18 3.73 6.17 2.69 6.72

NASA TLX
NASA TLX 2.30 0.93 0.14 2.01–2.58 1.03 3.80 1.00 4.2

Custom Group Behavior Questionnaire
Cohesion 6.55 0.85 0.13 6.29–6.80 5.00 7.00 3.00 7
Attention 5.16 1.36 0.21 4.74–5.57 3.15 7.00 2.00 7
Proximity 3.93 1.99 0.30 3.33–4.54 1.00 7.00 1.00 7
Conversation 6.20 1.00 0.15 5.90–6.51 4.15 7.00 3.00 7
Collaboration 6.64 0.84 0.13 6.38–6.89 5.15 7.00 3.00 7

Upon task completion, a post-task questionnaire assess-
ing their cognitive load, presence, and perspective of what
they think about how the collaboration went with the other
group members in the task condition. The time it took for
each group to complete the task varied; however, in general,
the total duration of the session, including consent, brief-
ing, training, headset calibration, experiment, and question-
naires, took less than an hour.

5 RESULTS
5.1 Perceived Group Behavior & Tasks Summary
We begin with an overview of participants’ perceived ex-
periences, task performance metrics, and group-level col-
laboration indicators. These results offer a joint view of
how groups behaved and how they experienced the collab-
oration. This allows us to assess alignment and divergence
later across sensor-based indicators, performance metrics,
and subjective perceptions of collaboration.

We summarize the descriptive statistics illustrating par-
ticipants’ subjective experiences with response variability
in Table 3. Metrics such as PQ (µ5.46) and IPQ (µ4.39)
indicate moderate presence levels. The PQ-REAL subscale
has a mean of 5.16 (σ1.1), suggesting moderate realism,
while the ACT subscale shows a high mean of 5.8, indicat-
ing strong perceived action capability. INV subscale vari-
ability (µ3.68,σ1.53) highlights differing engagement lev-
els. SP (µ = 5.07) reflects strong spatial awareness. The
mean NASA TLX score of 2.3 points to a low perceived
workload. Group cohesion and collaboration scored high
(µ6.55 and 6.64), while group proximity varied (µ = 3.93,
higher SD), indicating differing closeness perceptions.

Next, we present two complementary sets of group-level
metrics. A summary of behavioral interaction statistics cap-
tured through system instrumentation is seen at Table 4.
These include the number of images grabbed per partici-
pant, total grabs, label overrides, label changes, and task
completion time. These metrics reflect the group’s en-
gagement with the task, coordination complexity, and task
performance. For example, Group 8 had a notably high
number of total grabs (436) and the longest task duration
(994.05s), suggesting prolonged deliberation or difficulty
reaching consensus. In contrast, Group 5 completed the task
most quickly (209.26s), with lower override activity, possi-

Table 4: Group-Level Task Metrics Summary.

Group
Num of
Images

Grabbed

Total Num
of Image
Grabbing

Num of
Image
Labels

Overridden

Total
Images
Looked

At

Completion
Time

(seconds)

Num of
Label

Changes

1 50.0 232.0 22.0 109.0 415.54 56.0
2 52.0 378.0 24.0 112.0 620.59 72.0
3 71.0 497.0 43.0 111.0 676.78 88.0
4 51.0 254.0 23.0 110.0 513.09 55.0
5 54.0 306.0 26.0 110.0 209.26 61.0
6 60.0 320.0 32.0 112.0 622.31 71.0
7 71.0 388.0 44.0 111.0 562.77 101.0
8 58.0 436.0 30.0 112.0 994.05 59.0
9 50.0 220.0 22.0 112.0 430.89 52.0
10 70.0 458.0 42.0 112.0 652.17 84.0
11 72.0 378.0 44.0 112.0 534.00 92.0
12 60.0 318.0 84.0 112.0 573.91 65.0

Table 5: Mean scores per group for Presence (PQ+IPQ),
NASA TLX, and group behavior metrics (cohesion, atten-
tion, proximity, conversation, collaboration).

Group Presence TLX Coh. Attn. Prox. Conv. Collab.
1 4.86 2.20 5.75 4.25 5.50 6.25 6.25
2 5.04 2.55 6.75 5.25 4.75 6.25 6.75
3 4.50 1.90 7.00 4.00 2.25 7.00 6.75
4 5.32 2.55 6.00 5.00 5.00 6.25 6.25
5 5.22 1.20 7.00 4.75 4.00 5.25 7.00
6 5.40 1.95 7.00 5.00 3.50 6.50 7.00
7 5.07 2.30 7.00 7.00 3.50 6.75 7.00
8 5.06 2.50 6.50 5.75 3.00 6.50 6.75
9 4.75 2.25 6.50 5.50 3.75 6.25 5.75

10 4.81 2.95 6.25 5.00 4.00 5.50 6.75
11 4.15 2.90 6.25 5.25 4.00 5.75 6.75
12 4.50 2.70 6.00 6.00 3.75 5.50 6.00

bly reflecting more streamlined decision-making or higher
initial agreement.

Table 5 reports group-wise mean values from the post-
task questionnaires. These include subjective ratings
for presence (PQ+IPQ), perceived cognitive load (NASA-
TLX), and five dimensions of group behavior: cohesion, at-
tention, proximity, conversational support, and overall col-
laboration. The average presence score across groups was
moderately high, ranging from 4.15 to 5.4, while TLX
scores remained low, indicating generally low cognitive ef-
fort. Group cohesion and collaboration ratings remained
consistently high (close to or at 7), whereas proximity scores
were more variable across groups, aligning with previously
observed differences in physical movement and spacing.

5.2 Collaboration via Sensor-based Indicators
This section discusses the participants’ reflections on collab-
oration, alongside behavioral indicators obtained from sen-
sors and system logs, at both individual and group scales.
Findings for shared gaze overlap frequency (indicating vi-
sual focus on the same virtual image), proximity duration
(measuring time spent in physical proximity during inter-
action), and speaking proportion and variance (represent-
ing turn-taking and conversational balance via total speak-
ing time, frequency, and variance in participation) can be
seen in Table 6. Normality checks for subjective collabora-
tion scores were conducted using the Shapiro-Wilk test (p=
0.2864 at the group level; p = 2.0125e-04 at the individ-
ual level), determining choice of Spearman or Pearson test
based on sensor metric normality. Highlighted table rows
indicate statistically significant correlations (p < 0.05), of-
fering quantitative insight into how subjective assessments
correlate with interaction behavior patterns.

Positive correlations between self-reported collaboration
and sensor-based metrics were noted. At the individual
level, collaboration scores significantly correlated with both
shared gaze overlap frequency (ρ = 0.3646, p = 0.0108)
and proximity duration (ρ = 0.3027, p = 0.0365) as per
Spearman tests. Group analysis indicated moderate corre-
lations with shared gaze overlap (ρ = 0.4814, p = 0.1131)
and proximity duration (ρ = 0.2262, p = 0.4796), though
these were insignificant. Conversational dynamics at the



group level, particularly speaking proportion, were linked to
perceived conversational support (ρ = 0.6517, p = 0.0217).
No significant individual-level correlations were observed
between conversational support and speech activity metrics,
although directionally positive trends were present.

5.3 Performance via Sensor-based Indicators
This section investigates the association between task per-
formance, measured by the time taken to complete a collab-
orative image sorting task. We evaluated whether sensor-
based metrics could predict the group’s performance in task
completion. The normality of the metrics and completion
time was assessed with the Shapiro-Wilk test. Depending on
the data distribution, we employed Spearman correlation for
non-normal distributions or linear regression when assump-
tions were satisfied. For both individual and group levels,
the correlation coefficient (ρ), regression coefficient (β ), p-
values, and R2 values are presented.

As illustrated in Table 7, visual coordination emerged as
a significant predictor of group performance. At both indi-
vidual (ρ = 0.6710, p = 1.80e-07) and group levels, higher
shared gaze overlap correlated with quicker task comple-
tion. A linear regression at the group level attributed 74%
of the variance in completion time to shared gaze (R2 =
0.7411), underscoring its role in group performance. Prox-
imity duration was also significantly related to completion
time. At the group level, a linear model accounted for
over 61% of the variation in task duration (R2 = 0.6117,
p = 0.0026). Interaction balance metrics were strongly re-
lated to task performance. At the individual level, variance
in image grabs (ρ = 0.6713, p = 1.76e-07) correlated with
more effective task progression. This association was also
evident at the group level, where variance in label overrides
(ρ = 0.6713, p = 1.76e-07) significantly correlated with
completion time (ρ = 0.7597, p = 0.0041). These findings
indicate that groups with greater shared gaze frequency and
balanced image interactions tend to finish tasks faster.

5.4 Experience via Sensor-based Indicators
This section explores whether participants’ internal states,
specifically presence and cognitive load, are associated with
behavioral patterns sensed during the collaborative task.
These analyses complement prior sections by focusing not
on group-level constructs but on how individual experience
is reflected in interaction dynamics.

We first present the correlations between presence and
cognitive load (NASA-TLX) scores and sensor-derived in-
dicators of shared attention, proximity, and interaction bal-
ance in Table 8. Sensor-based metrics were drawn from
the same behavioral indicators introduced earlier, captur-
ing visual coordination, physical closeness, and contribu-
tion variability. Presence was not significantly associated
with shared attention metrics (shared attention percentage:
ρ = 0.0417, p = 0.7783), proximity (mean pairwise dis-
tance: ρ = 0.0736, p= 0.6190), or interaction balance (vari-
ance in image grabs: ρ = 0.0083, p = 0.9555). This sug-
gests that the individual sense of presence was not directly
mirrored in the observable group interaction patterns. For
cognitive load, however, we found a positive association
with shared gaze overlap at the individual level (ρ = 0.3223,
p = 0.0255), indicating that users reporting higher mental
effort tended to participate in more episodes of shared atten-
tion. Other indicators, including proximity and interaction
balance, did not show significant relationships with cogni-
tive load (ρ =−0.1777, p = 0.2268). These results suggest
that internal experience is partially reflected in the observ-
able sensor-based metrics of group behavior. In particular,
shared visual focus may demand or reinforce cognitive ef-
fort. At the same time, spatial positioning and contribution
balance may reflect other aspects of collaboration beyond
individual mental workload or presence.

6 DISCUSSION
This section analyzes findings in the context of our S2S
framework by assessing behavioral indicators from sensors
and system logs, subjective experiences, and group reflec-
tions. We evaluate how these signals match participants’
reported collaboration experiences and task results, reveal-
ing insights into how collaboration is both enacted and ex-
perienced. Significant associations were identified between
sensed group behavior and reported experiences. We distin-
guish between individual and group insights to evaluate the
alignment’s strength and origin.

Shared gaze frequency was a consistent indicator of per-
ceived collaboration and shared attention at both analysis
levels. Group-level correlations were particularly robust,
highlighting shared visual focus as both an individual and
collective phenomenon. In contrast, conversational support
exhibited weaker correlations. A significant relationship
between speaking balance and perceived support was only
identified at the group level, implying that individual per-
ceptions may not align with supportive speaking dynamics,
but group-level participation does indicate communicative
balance. We affirm H1 and H1.1, as multiple gaze-based
features correlated with perceived collaboration and shared
attention. We partially confirm H1.2, as conversational dy-
namics were significant solely in group-level aggregates.

Behavioral indicators, particularly shared gaze frequency
and proximity duration, demonstrated strong predictive abil-
ity for task completion time, especially at the group level.
Groups that engaged in mutual observation and remained
close completed tasks more rapidly, underscoring the impor-
tance of co-orientation in effective collaboration, as shown
by our study’s metrics. Interaction balance, such as variance
in image grabs or label overrides, was also linked with effi-
ciency. Notably, these patterns persisted at both individual
and group scales, reinforcing the role of participation eq-
uity in enhancing fluency. We accept H2, H2.1, and H2.2.
Group-level behavior metrics, notably shared attention and
proximity, predicted performance, and interaction balance
indicated collaborative fluency across both levels.

Sensory behavioral features were weakly associated with
subjective states such as presence or cognitive load. A near-
significant individual-level link was observed between cog-
nitive load and shared gaze frequency, but it lacked strength
and consistency at the group level. Presence did not cor-
respond clearly with proximity or gaze patterns, suggest-
ing a lack of visible manifestation of internal states in this
context. Likewise, no significant relationship emerged be-
tween cognitive load and participation balance. H3 is par-
tially accepted due to some individual-level signal, but not
consistently. We reject H3.1, H3.2, and H3.3 due to a lack
of strong evidence connecting presence or cognitive load to
group-level behaviors.

6.1 Implications
Our study indicates key takeaways for designing collabora-
tive MR systems and for future research that aims to bridge
sensed behaviors with user experiences. The link between
shared gaze and perceived collaboration implies that visual
coordination acts as a behavioral signal and a perceptual an-
chor for participants. Therefore, MR systems should feature
indicators such as shared gaze highlights or real-time atten-
tion cues to enhance awareness of group focus. Such simple
interventions can foster shared attention and keep users in
sync without disrupting task momentum.

Across multiple hypotheses, group-level behaviors more
accurately predicted collaboration and task performance
than individual metrics. This suggests that meaningful so-
cial patterns emerge through aggregation, not simply from
individual activity. Systems that infer group dynamics or
adapt to team behavior should avoid user-centric interpreta-



Table 6: Correlation between subjective collaboration measures and sensor-based indicators with individual and group levels
test types.

Sensor-based (Subjective) Metric Target Normality
(Indiv. / Group)

Metric Normality
(Indiv. / Group)

Correlation
(Indiv. / Group)

p-Value
(Indiv. / Group)

Test Used
(Indiv. / Group)

Shared Gaze Overlap (Shared Attention) 2.01e-04 / 0.286 7.40e-08 / 0.0014 0.3646 / 0.4814 0.0108 / 0.1131 Spearman / Spearman
Shared Gaze Duration (Shared Attention) 2.01e-04 / 0.286 7.32e-07 / 0.0650 0.3027 / 0.2262 0.0365 / 0.4796 Spearman / Pearson
Jointly Viewed Images (Shared Attention) 2.01e-04 / 0.286 0.2048 / 0.3740 -0.0592 / 0.0861 0.6893 / 0.7902 Spearman / Pearson
Speaking Proportion (Conversation) 2.01e-04 / 0.286 0.0021 / 0.0097 0.0063 / 0.6517 0.9659 / 0.0217 Spearman / Spearman
Speaking Variance (Conversation) 2.01e-04 / 0.286 2.71e-05 / 0.0998 -0.1019 / -0.1117 0.4907 / 0.7297 Spearman / Pearson
Proximity Duration (Collaboration) 2.01e-04 / 0.286 7.32e-07 / 0.0650 0.3027 / 0.2262 0.0365 / 0.4796 Spearman / Pearson
Mean Distance (Collaboration) 2.01e-04 / 0.286 0.5384 / 0.7793 -0.1913 / -0.0905 0.1927 / 0.7797 Spearman / Pearson
Image Grabs (Collaboration) 2.01e-04 / 0.286 3.75e-06 / 0.7734 -0.1498 / 0.1325 0.3094 / 0.6814 Spearman / Pearson
Label Overrides (Collaboration) 2.01e-04 / 0.286 0.0037 / 0.0342 0.0881 / 0.1470 0.5516 / 0.6485 Spearman / Spearman
Image Grabs Var (Collaboration) 2.01e-04 / 0.286 7.97e-11 / 7.27e-05 0.1579 / 0.4921 0.2837 / 0.1042 Spearman / Spearman
Label Overrides Var (Collaboration) 2.01e-04 / 0.286 5.52e-04 / 0.3237 0.0886 / 0.1727 0.5491 / 0.5916 Spearman / Pearson

Table 7: Correlation between task completion time and sensor-based indicators with individual and group levels test types.

Sensor Metric Target Normality
(Indiv. / Group)

Metric Normality
(Indiv. / Group)

Correlation
(Indiv. / Group)

p-Value
(Indiv. / Group)

Test Used
(Indiv. / Group)

Shared Gaze Overlap Frequency 3.48e-04/0.3405 7.40e-08/0.0014 0.6710/0.6923 1.80e-07/0.0126 Spearman / Spearman
Proximity Duration 3.48e-04/0.3405 7.33e-07/0.0650 0.3962/0.6117 (R2) 1.65e-06/0.0026 Linear / Linear

Image Grabs Variance 3.48e-04/0.3405 7.97e-11/7.27e-05 0.6713/0.6713 1.76e-07/0.0168 Spearman / Spearman
Label Overrides Variance 3.48e-04/0.3405 5.53e-04/0.3237 0.6713/0.7597 1.76e-07/0.0041 Spearman / Pearson

Image Grabs 3.48e-04/0.3405 3.75e-06/0.7734 0.2037/0.4108 (R2) 0.1649/0.0247 Spearman / Linear

tions in isolation. Instead, they should incorporate group-
level features that reflect distribution, synchronicity, and co-
occurrence.

Our results show that while sensed behavior reliably
maps onto collaborative perception and task efficiency, it
falls short of capturing deeper subjective experiences, such
as presence or cognitive availability in its current form. This
reinforces that not all internal states are externally observ-
able, even in high-fidelity sensing environments. To mean-
ingfully comprehend experience from sensor data, some in-
termediary techniques are needed to connect high-level be-
havioral indicators with low-level experiential states. De-
signers should be cautious about over-interpreting behav-
ioral signals as proxies for mental state and instead consider
combining sensing with self-reports or adaptive prompt-
ing. Hybrid models that integrate system-logged data with
lightweight subjective inputs could enable more robust per-
sonalization and responsiveness in collaborative MR.

7 LIMITATIONS AND FUTURE WORK
This study offers early insight into the relationship between
sensed group behavior, subjective perception, and task per-
formance in collaborative MR settings. At the same time,
several limitations should be considered, some by design,
others presenting opportunities for future work.

First, we employed a singular task in one experimental
condition to distinctly observe collaboration dynamics in a
regulated environment. The open-ended image sorting task
was chosen due to its flexibility and inherent coordination
requirements, which are ideal for observing genuine group
behavior. Despite this, the controlled environment might not
reflect the complete range of variability in time-sensitive or
specialized tasks. Future research should investigate various
task types and adaptive system conditions to generalize be-
yond this setup. The number of groups restricts the statisti-
cal power of analyses conducted at the group level. Despite
a relatively high participant count, the nature of small-group
interactions limits group-level observations. Nonetheless,
the sample size was adequate to reveal consistent and inter-
pretable patterns across both individual and group analyses.
Future research could build upon this by employing larger-
scale deployments or multi-session studies.

Group composition was not experimentally manipulated;
participants had the autonomy to self-select or be ran-
domly assigned to groups. This decision sought to observe
genuine interaction dynamics instead of creating artificial
teams. Nonetheless, pre-existing familiarity among partici-
pants might impact conversation, shared focus, and comfort.

Although not measured in this study, future research could
quantify prior familiarity to understand its effects better.

In addition, we focus on interaction signals such as gaze,
proximity, and voice activity, which could be tracked us-
ing standard MR hardware. This choice aligned with our
aim to create practical, lightweight sensing systems. Yet,
using only headset sensors restricted us from accessing
detailed affective, physiological, or facial data. Future
research should investigate multimodal enhancements for
richer sensing, such as emotion recognition or biometric
monitoring.

Finally, while our framework bridges sensor data and
subjective reflection, it cannot fully capture internal states
such as frustration, motivation, or attention lapses. These
nuanced experiences often remain invisible to behavioral
sensing alone. Our study highlights the gap between ob-
servable behavior and internal experience, reinforcing the
need for interpretive models that integrate multiple modali-
ties and participant feedback.

In sum, the study was purposefully scoped to explore col-
laborative sensing in MR using a task and instrumentation
that balance ecological validity and control. The observed
patterns suggest promising directions for expanding system
awareness and adaptability while motivating future research
to test across conditions, sensor modalities, and longer-term
collaboration scenarios.

8 CONCLUSION
This study examines the alignment between objective sensor
data and subjective perception of experiences in MR col-
laboration. The confirmation of H1 and H2 indicates that
sensor-derived metrics, such as shared gaze frequency, re-
liably reflect perceived collaboration and task performance.
Nonetheless, the partial validation of H3 reveals limitations:
complex subjective states, such as presence and cognitive
load, show limited correlation with objective measures of
behavioral data, suggesting that internal experiences are dif-
ficult to capture solely through external observations. Future
investigations should focus on the interaction between ob-
jective and subjective metrics across varied conditions, sen-
sor types, and collaboration contexts.

We situate this work in the growing body of research
studying design-responsive, human-aware MR systems. By
grounding system- and sensor-level observations in subjec-
tive experience, we move toward sensing models that prior-
itize users’ perspectives. This paper contributes a concep-
tual model, a validated experimental setup, and empirical
findings illuminating where sensor data and user experience



Table 8: Correlation between subjective experience and sensor-based indicators with individual and group levels test types.

Sensor Metric Target Normality
(Indiv. / Group)

Metric Normality
(Indiv. / Group)

Correlation)
(Indiv. / Group)

p-Value
(Indiv. / Group)

Test Used
(Indiv. / Group)

Target: Presence (PQ + IPQ)
Shared Attention (%) 0.8677 / 0.7494 0.3722 / 0.9363 0.0417 / 0.4802 0.7783 / 0.1141 Pearson / Pearson

Jointly Viewed Images 0.8677 / 0.7494 0.2048 / 0.3740 -0.0820 / -0.4956 0.5795 / 0.1013 Pearson / Pearson
Mean Pairwise Distance 0.8677 / 0.7494 0.5384 / 0.7793 0.0736 / -0.0282 0.6190 / 0.9307 Pearson / Pearson

Proximity Duration 0.8677 / 0.7494 7.3267e-07 / 0.0650 -0.0536 / 0.2626 0.7173 / 0.4097 Spearman / Pearson
Variance in Image Grabs 0.8677 / 0.7494 7.9738e-11 / 7.2687e-05 0.0083 / -0.1049 0.9555 / 0.7456 Spearman / Spearman

Target: Cognitive Load (NASA TLX)
Shared Gaze Overlap 0.0225 / 0.3828 7.3990e-08 / 0.0014 0.3223 / 0.2872 0.0255 / 0.3654 Spearman / Spearman

Pairwise Distance 0.0225 / 0.3828 0.5384 / 0.7793 -0.1777 / -0.2020 0.2268 / 0.5289 Spearman / Pearson
Variance in Image Grabs 0.0225 / 0.3828 7.9738e-11 / 7.2687e-05 0.1261 / 0.2522 0.3933 / 0.4291 Spearman / Spearman

align and where they diverge. Through this lens, we take a
step toward MR environments that do not just support col-
laboration but sense it in the ways users feel it.
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