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ABSTRACT
This paper exhaustively explores the threat landscape of coordi-

nated spatiotemporal attacks in mixed reality systems. Novel device-

level and cross-device time translation and spatial shift attacks are

launched, and their impact on deep learning based sensor fusion is

evaluated. A major focus of this work is to establish stealthiness in

the presence of sophisticated security mechanisms with an added

constraint that mixed reality systems allow minimal time durations

for covert operation. The efficacy of proposed attacks is evaluated

through a preliminary study on inertial and visual data streams.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented reality.
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1 INTRODUCTION
The immersiveness of Mixed Reality (MR) applications relies on

multi-modal sensing of user activities and surrounding environment

via a range of commodity sensing devices such as Head Mounted

Displays (HMD), hand-held controllers, and external cameras. One

can envision future applications that use smartphones, wearable,and

body area networks with existing MR platforms to deliver improved

user experience. Widespread adoption of MR technology in critical

applications such as surgery, medical therapies, and neurorehabil-

itation has made it a lucrative target for malicious activities. MR

peripherals open door for novel and stealthy attacks, due to their

multimodal attack surface and extensive reliance on spatiotemporal

services both at the device and data level. Though prior research

has focused on device authentication, authorization and data in-

tegrity [1, 4], we present attacks that maliciously induce temporal

and spatial variations among data points on one device or across de-

vices in a coordinated fashion leading to undesirable consequences.

Spatiotemporal attacks have various dimensions. Data-level
temporal and spatial semantics can be attacked by manipulating sam-

pling rate, frame rate, and pixel distribution. For example, MEMS
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inertial sensors in HMDs are susceptible to resonant acoustic inter-

ference that induces drifts in sampling rates to shift the inertial signal

in time [5]. Similarly, an attacker with image processing capabilities

can put together a sequence of frames to change the spatial land-

scape.Device-level manipulation of timing and location services

via delaying timestamps and distance enlargement is also prevalent.

In contrast to other smart spaces, MR systems are more suscepti-

ble to spatiotemporal attacks, particularly relying on fusing hetero-

geneous sensing modalities in real-time to track human movements

and gestures that are contingent upon device-level and data-level

coordination at temporal and spatial scale.

In this work, we make a case for coordinated spatiotemporal
attacks on MR systems. We demonstrate that while an attack on

a single sensor can divert the user from its path, a coordinated

attack on multiple sensors provides a more precise control over

the attack and makes it hard for the system to detect abnormal

trajectory. By manipulating the timing and spatial properties of

devices and data, we show the adverse impact on critical applications.

First we present Device-level temporal and spatial attacks and

cross-device attacks. Then we demonstrate how these attacks are

coordinated for stealthiness.

2 COORDINATED SPATIOTEMPORAL
ATTACKS

We illustrate the effects of coordinated spatiotemporal attacks in

Figure 1 on MR based surgical usecases. D represents a sensor pro-

ducing data. Let’s assume D1 is a camera with a given frame rate

and inter-frame correlation(IFC) metric. The solid yellow rectangle

around consecutive frames f1, f2, and f3 depicts (I) device-level
time translation attack that changes not only the sampling

rate but also the ordering of frames. This attack affects a surgeon

performing pedicle screw surgery using HMD tracking to calculate

a precise needle angle, and a few degrees of error will result in dire

consequences. The green rectangle around frames f r3 and f r4 repre-

sents a (II) device-level spatial shift attack manipulating

IFC at a fixed sampling frequency. For instance, this attack translates

into misaligned spatial features of the images from Computed To-

mography Angiography (CTA), and results in wrong renderings of

patient’s overlayed arteries, thus causing misplaced perforations. Red

dotted rectangles around f3, f r3, g3, and a3 show data misalignment

among four devices due to (III) cross-device time translation
attack. This attack can be launched by maliciously drifting device

clocks in the desired direction. As organs keep changing during sur-

gical interactions, timely and tightly synchronized data-streams are

crucial for hazard-free surgical procedure. Finally, the blue rectangle

around f r2 and g2 depicts a (IV) cross-device spatial shift
attack, where the attacker maliciously introduces relative rotations

or spatial translation on selected samples from different sensing

modalities. Any spatial changes across devices will impair surgeon

of necessary information like position of instrument and/or blurred
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Figure 1: Illustration of device-level and cross-device time trans-
lation and spatial shift attacks.
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Figure 2: Device-level attacks: (a) Temporal attacks on inertial
datastream. (b) Spatial attacks on visual stream.

virtual rendition of patient’s organs. The goal of a stealthy attacker

is to coordinate attacks to remain hidden and slowly diverge system

from its true state. For instance, if a verifier keeps track of a fixed

sampling rate to counter device-level attacks, attacker selectively

drops CTA frames with coordinated time dilation of inertial data

to give a false illusion of constant rate. An attacker can also insert

partially forged frames and synchronize it with constricted time

for covert operation. In addition, cross-device coordinated attacks

misalign frames to hide variations in IFC due to frame forgery.

MR applications depend on multimodal data and are increasingly

using deep learning based approaches for sensor fusion. These ap-

proaches are sensitive to the spatial and temporal properties of data,

exposing them to spatiotemporal attacks. Our preliminary study [3]

suggests that data misalignment from various modalities results in

reduced model accuracy. Also, spatial and temporal misalignment

distorts the fundamental characteristics of latent features from dif-

ferent sensing modalities. This presents new challenges for sensor

fusion techniques and motivates further exploration on spatiotempo-

ral attacks which is the focus of our work.

3 EVALUATION
Our preliminary results test the efficacy of spatiotemporal attacks on

OxIOD dataset [2]. We evaluate a scenario where a user is tracked

by two sensors on a HMD (inertial sensor and camera), while slowly

moving away from its initial position. The user’s position is tracked

at every time step i.e. 10 millisecond via inertial and visual rela-

tive pose estimations. Ground truth distance traversed by the user

is obtained separately from the inertial and visual positions at each

time step. Finally, both streams are fused using Kalman filter to

determine ground truth distance for sensor fusion. To detract the

user from its intended path, we simulate temporal attacks on inertial

data and spatial attacks on visual data. Figure 2a shows one kind of

device-level time translation attack on inertial data. This attack mod-

ulates the sampling rate to achieve desired deviation from ground

truth distance. Thus providing the attacker fine-grained control over

distance enlargement and reduction at a constant or exponential

rate. The attacker would also achieve zero-displacement in a chosen

time interval to remain hidden from sanity checks of the verification
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Figure 3: (a) Coordinated attack on either inertial or visual
stream at a time. (b) Zero displacement coordinated attack.
system. However it is hard to avoid large deviations from the in-

tended outcome through one sensing modality, thus jeopardizing the

attacker’s ability to be stealthy and cause more damage. In Figure 2b,

we demonstrate spatial attack on visual data. This attack misaligns

pixel distribution of consecutive frames such that IFC stays within a

certain detection threshold. Lower IFC between successive frames

results in quick and large deviations from the expected outcome

that can alarm the verifier. Even 80% IFC significantly impacts the

outcome in Figure ??. We suggest that an attacker can exercise fine

control over device parameters and craft a coordinated attack across

various sensing modalities to cause lasting damage without getting

detected.

In the previous experiments, we demonstrated how an individual

sensor stream can be manipulated for an attack. In practice, data

from more than one sensors is fused together to increase tracking

accuracy by removing noise present in any single sensor’s data. We

first evaluate the efficacy of an attack on one sensor’s stream to

determine if it can divert the user trajectory or the attack is filtered as

noise. Figure 3a shows the individual attacks, on either visual stream

or inertial data, both affecting the fused stream. However, the ability

to only manipulate a single sensor at a time restricts the attacker

to simple attacks as other streams can be used to detect abnormal

patterns of sensor under attack. To solve this problem, we launch

coordinated attacks on both sensor’s stream. The goal of the attack

is to keep diverting the user from original path to arbitrary location

such that at the end user should reach its original destination (zero

displacement strategy). Figure 3b shows that the attacker is able to

launch a precisely controlled attack on the fused data stream. It is

hard to detect this attack as both sensors have reciprocated.

4 CONCLUSION AND FUTURE WORK
This work presents an unexplored yet a large attack surface on MR

systems. We have shown that attacks across temporal and spatial

scale, when coordinated, cause undetected damage. Our next steps

would explore new attack parameters, experiment with distributed

sensing modalities, and evaluate over real MR infrastructure includ-

ing Hololens2 headset, external cameras, and wearables.
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