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Abstract

Emerging resource-constrained cellular Internet of Things (IoT) ap-
plications such as drone swarms, autonomous vehicles, and remote
surgery via mixed reality demand millisecond-level time synchro-
nization. Narrow-Band IoT (NB-IoT), the leading low-power wide-
area technology, struggles to meet these requirements. The root
cause lies in the non-deterministic delays inherent in the 5G proto-
col design. Uplink reliability and scheduling mechanisms introduce
asymmetric latencies that disrupt conventional time synchroniza-
tion algorithms such as the Network Time Protocol (NTP). Time-
critical packets are further affected by deep-sleep wake-up latency,
base station scheduling delays, uplink/downlink asymmetry, and
unpredictable drift from inexpensive oscillators. Together, these
factors can accumulate into timing errors on the order of hundreds
of milliseconds. In this paper, we first quantify timing errors across
five dimensions on a commercial NB-IoT network. We then present
SYNCHRONB, an on-device framework that combines lightweight
machine learning with a cross-layer control loop. SYNCHRONB fore-
casts 5G network volatility and crystal drift to adaptively wake the
cellular modem, reserves uplink resources just in time, switches into
resilience mode when the wireless link degrades, and prioritizes
time synchronization packets in the MAC-layer queue. We deploy
SYNCHRONB on commercial NB-IoT hardware and evaluate it over a
live 5G network. Our experiments show that SYNCHRONB achieves
single-millisecond-level synchronization accuracy under NB-IoT
uplink/downlink asymmetry and, diverse wireless conditions, while
requiring only 36% of the radio-on time and 25% of the bandwidth of
the NTP baseline, transforming NB-IoT time synchronization from
a reactive protocol into an intelligent, self-tuning control loop.
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Table 1: Time-Critical Applications in Cellular NB-IoT

Application Sync Req. | Impact of Misalignment

Smart Grid <20 ms Delayed fault isolation, equipment damage.
Mixed Reality <20 ms Nausea, disorientation, poor UX.
Industrial Autom. 1-10 ms Robotic faults, safety hazards.

Drone Coordination | <10 ms Collisions, unstable formations.

5G Positioning 1-10 ms Location errors, unsafe guidance.
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1 Introduction

Modern cellular Internet of Things (IoT) platforms are no longer
confined to low-rate telemetry; they are rapidly extending into
critical and time-sensitive domains such as mixed reality [22], pre-
cision drone swarms [27], and other applications detailed in Ta-
ble 1. These applications depend on precisely coordinated actions,
distributed sensing, multi-sensor fusion, event ordering, synchro-
nized sleep-wake cycles, and secure handshakes in cryptographic
operations [16, 35, 45, 56], that demand end-to-end time synchro-
nization on the order of a few milliseconds [7, 25]. Even a handful
of milliseconds of misalignment can lead to anything from unstable
swarm flights [55] to user motion sickness [31, 48], yet they are typ-
ically deployed in remote or battery-powered environments where
wired or high-throughput connectivity is infeasible. Narrowband-
IoT (NB-IoT) [64] offers deep-coverage, wide-area scalability, deep
sleep modes [33, 47] and ultra-low transmit power that together
can stretch battery life to five years or more on a single cell [53],
making it a viable choice for such deployments. In essence, this
work focuses on applications that benefit from NB-IoT’s extended
battery life and wide coverage, rather than those requiring high
throughput or low latency, which are better supported by 5G NR
or RedCap. These constrained deployments require reliable timing
without network modification.

However, maintaining accurate clocks across these battery pow-
ered deployments remains challenging [5, 30]. Today’s NB-IoT de-
vices typically rely on the Network Time Protocol (NTP) [40] or
its simpler variant SNTP [41] to periodically poll external servers
for time. In theory, NTP can maintain millisecond-level sync on
wired or Wi-Fi networks [39]. In practice, however, we find that
directly applying NTP over NB-IoT yields time offsets more
than 100 times worse. Fundamentally, an NB-IoT device’s clock
can fail to sync for two main reasons: (1) highly asymmetric wireless
link delays where the one-way latency for sending a timestamp
(uplink) can vastly exceed that of receiving one (downlink) [54],
and (2) inexpensive and inaccurate oscillators that slowly gains or
loses time [63]. NTP misinterprets extra uplink latency as clock
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drift and (attempts to) correct the clock in the wrong direction [15],
or refuses to adjust when it should [44], leading to synchronization
errors far outside acceptable error bounds. Aggressive power-saving
modes further aggravate the problem: each wake-up from deep
sleep (i.e., the idle-to-connected transition) incurs a multi-hundred-
millisecond handshake, which NTP misinterprets as clock skew.
This results in large, unnecessary time corrections on every resume
procedure [54]. The lack of robust fail-safe mechanisms in conven-
tional network-layer designs, such as static timeouts or conservative
safety margins, makes it difficult to correct these errors [37].

In our empirical analysis, we show that existing approaches to
time synchronization in cellular IoT fall short under NB-IoT’s con-
straints (§4). The off-the-shelf NB-IoT module using SNTP saw its
clock out of sync by 100s of millseconds during various network
conditions because NTP [40] assumes symmetric delays and con-
stant radio availability, misestimate when devices sleep for minutes
at a time, or face narrowband retransmissions [44]. On the other
hand, high-accuracy 5G solutions such as TSN/IEEE 802.1AS de-
liver sub-microsecond accuracy [50], but they demand hardware
timestamping, dedicated slices, and low-latency links that NB-IoT
cannot support [60].

Existing wireless sensor network (WSN) protocols such as Zig-
bee [12] and BLE mesh networks [6] use peer-to-peer beacon-
ing [11, 18] or multi-hop consensus [59] for timing. These ap-
proaches assume devices can listen to each other and exchange
timestamps. In NB-IoT, devices cannot do this as the network uses
a strict star topology controlled by the base station, devices sleep
for long periods, and cannot timestamp each other’s traffic [4]. As
a result, broadcast and peer-based synchronization methods do not
apply. LoRa, while also operating in a star topology, depends on net-
work infrastructure for synchronization, e.g., LoORaWAN gateways
periodically broadcast timing beacons that end devices use to align
their clocks [46]. Such gateway-assisted methods are unavailable
in NB-IoT. These constraints motivate a device-only approach that
predicts timing asymmetry locally without infrastructure hooks.

In this paper, we present SYNCHRONB as the first device-only
synchronization framework for NB-IoT that explicitly models up-
link/downlink asymmetry without requiring network or protocol
modifications. Instead of treating NTP as a black box and hoping
more frequent polls or network upgrades will help, we tackle the
problem holistically from the device side. Our solution is an on-
device framework that proactively anticipates and compensates for
both clock drift and network asymmetry before they impact sync
accuracy. Our design blends lightweight machine learning with
cross-layer control in the NB-IoT modem, all within the energy and
bandwidth constraints of IoT devices.

At its core, SYNCHRONB orchestrates two lightweight on-device
predictors in tandem. The drift analyzer continuously learns each
device’s crystal characteristics, forecasting when its clock will
exceed a specified error threshold. Simultaneously, the network
volatility predictor monitors radio link quality to estimate when a
single-packet SNTP exchange may be distorted by transient channel
conditions. In response to these predictions, SYNCHRONB employs
an adaptive wake-up scheduling policy that proactively activates
the modem and injects an uplink beacon, mitigating cold-start la-
tency. It then pre-allocates packet resources through a closed-loop
reservation scheme, ensuring immediate uplink grant availability
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and further reducing delay asymmetry. Grant acts as a permission
from the base station that allows a device to transmit data on the
uplink. When link conditions deteriorate, SYNCHRONB dynamically
switches to a resilient burst synchronization mode, transmitting
multiple time packets in rapid succession and filtering for the most
reliable round-trip times. Finally, it introduces a priority assignment
mechanism within the modem’s MAC queue to prevent head-of-
line blocking, guaranteeing timely delivery of time packets while
preserving fairness across other traffic classes.

These mechanisms run entirely on the device’s microcontroller
unit (MCU) and modem firmware, requiring minimal extra bytes, a
few microseconds, and occasional packets, with no changes to the
5G network infrastructure. In essence, our approach transforms the
NB-IoT time sync problem from a passive, reactive task (periodically
asking an NTP server and hoping for the best) into an intelligent,
device-driven control loop that actively mitigates the known timing-
related failure modes of the underlying network. To this end, we
make the following contributions:

(1) Problem characterization of NB-IoT time sync (§3): We
present an in-depth theoretical and empirical analysis of why
conventional NTP fails on NB-IoT, quantifying the impact of
oscillator drift and multi-fold form of network asymmetry on
synchronization error. Through empirical measurements on a
commercial NB-IoT network operator, we show that naive SNTP
can suffer timing errors up to several seconds. We distill five
fundamental challenges that a practical and reliable solution
must overcome.

(2) SyNcHRONB On-device synchronization framework (§5):
We design and implement a lightweight synchronization frame-
work that mitigates NB-IoT uplink/downlink asymmetry through
adaptive, device-side control. Our solution integrates light-
weight machine-learning predictors with a suite of cross-layer
optimizations. Unlike prior methods, it requires no hardware
timestamping or network support beyond standard NB-IoT con-
nectivity. The device itself learns its clock drift (using a compact
LSTM-based model) and detects link anomalies (with a temporal
convolutional network) to dynamically adjust its synchroniza-
tion strategy.

(3) System implementation (§6) and evaluation (§7): We de-
velop a full prototype on commercial NB-IoT hardware and a
lightweight cloud NTP server. We evaluate the system in diverse
scenarios, varying signal conditions, network loads, and appli-
cation traffic patterns and demonstrate an order-of-magnitude
improvement in sync accuracy compared to standard NTP. We
show that our solution’s benefits come with minimal overhead.
Our adaptive algorithms limit extra transmissions resulting in
negligible additional bandwidth use.

2 Related Work

NB-IoT’s time synchronization challenge differs fundamentally
from both mesh-based wireless sensor networks that rely on co-
operative peer exchanges and infrastructure-assisted star-topology
systems such as LoRa or industrial TSN, where the base station
or coordinator provides timing beacons. In this section, we review
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existing synchronization methods across these categories and high-
light why they cannot be directly applied to NB-IoT’s constrained,
device-centric architecture.

NB-IoT time synchronization relies on general methods such
as Network Identity and Time Zone (NITZ) [1] and the Network
Time Protocol (NTP) [40], while advanced industrial cases may
use Time-Sensitive Networking (TSN) [60]. NITZ offers coarse,
infrequent updates tied to signaling events, unsuitable for contin-
uous alignment. NTP provides millisecond accuracy via periodic
timestamp exchanges over IP but we have shown in this paper
that it struggles with NB-IoT’s deep sleep and uplink constraints,
reducing accuracy. TSN delivers precise timing for 5G URLLC but
requires tightly coordinated scheduling and high bandwidth, mak-
ing it incompatible with NB-IoT. Thus, NITZ is specific but coarse,
NTP is general but unreliable in NB-IoT, and TSN is precise but
incompatible. Figure 1 shows timing solutions for NB-IoT across
the accuracy-complexity spectrum and puts our proposed solution
in context to state-of-the-art NB-IoT options.

Time synchronization in other IoT radio technologies such as
IEEE 802.15.4-based Zigbee, and BLE Mesh often leverages periodic
beaconing, time-stamped messages, or distributed consensus proto-
cols [11, 18, 59]. For instance, WSNs traditionally employ protocols
such as Reference Broadcast Synchronization (RBS), Timing-sync
Protocol for Sensor Networks (TPSN), or Flooding Time Synchro-
nization Protocol (FTSP) to achieve sub-millisecond accuracy under
favorable link conditions [19, 21, 38]. These approaches assume
peer-to-peer communication and frequent coordination, both im-
practical for NB-IoT devices operating under deep-sleep and sched-
uling constraints.

In contrast, long-range IoT systems such as LoRaWAN also follow
a star topology. However, unlike NB-IoT, LoRa networks provide
infrastructure support for synchronization. Schemes such as Long-
ShoT and TS-LoRa use gateway broadcasts or PHY-level slot timing
to align device clocks [46, 65]. NB-IoT devices, although similarly
organized in a star topology, do not have access to such timing
beacons or network-level broadcasts, and cannot observe or cor-
rect timing at the PHY layer. This lack of infrastructure assistance
further motivates our device-only synchronization approach.

Crystal clock drift prediction and compensation have been stud-
ied extensively in prior work. Drift has two parts: an approxi-
mately linear offset and a random jitter. It is typically modeled
using Kalman filters [26, 29] or regression models [51, 61]. These
methods work well for predicting the slow, long-term component of
drift, but they struggle with short-term changes caused by jitter. As
a result, to stay accurate, they usually require frequent timestamp
updates and continuous observations. NB-IoT devices, however,
spend long periods in DRX/PSM sleep and cannot sync at fixed
intervals without paying a high energy cost. There are also exter-
nal compensation methods, such as using on-board temperature
sensors to correct the oscillator [52] or having the network gate-
way estimate drift for nodes [58]. These approaches rely on extra
sensors or infrastructure support. Our constraints differ: we require
a method that runs on the device alone and does not assume any
changes to the NB-IoT network. These constraints motivate us to
adapt the drift-prediction mechanism and build a refined model
tailored to NB-IoT.
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Figure 1: Cellular IoT time synchronization options

Existing solutions for time synchronization either depend on
peer coordination (WSN/mesh), gateway beacons (LoRa/ TSNs), or
frequent timestamp updates (Kalman/regression models). NB-IoT
devices cannot rely on any of these, as they cannot overhear peers,
they do not receive dedicated timing beacons from the network, and
they cannot afford constant resynchronization. Our work, therefore,
targets a different point in this space: device-only synchronization
for NB-IoT that operates under long sleep intervals, asymmetric
uplink/downlink timing, and without infrastructure modification.

3 Timing in Cellular NB-IoT

Timing packets (from NTP or SNTP) experience delays within NB-
IoT protocol layers before transmission and after reception. We
will show that the one-way delays are highly asymmetric because
NB-IoT uses different processing paths for uplink and downlink.
Uplink Processing Delays. On an uplink path when an IoT device
is in Power Saving Mode (PSM), the 5G network uses Discontinuous
Reception (DRX) cycle and wakes only at predetermined intervals
to check for, or initiate, traffic [33]. The time packet generated in
the application layer @ waits idle during the DRX ramp-up (refer
Figure 2) interval, Tprx @), while the modem powers up the RF
front-end and transitions from the RRC Idle to RRC Connected
state. Even with established radio connections, no uplink (UL) re-
sources have yet been assigned. Before transmission can begin, the
device must obtain permission from the network base station to
access the wireless channel. It waits until the next UL opportu-
nity in the TDD ! frame, an additional delay of Tsg @ and then
transmits a Scheduling Request (SR) @. On receiving SR, the base
station allocates a specific time-frequency resource block and re-
turns the corresponding UL grant ®. The device gets a UL grant
after Tyrant (®. After obtaining valid grant, device moves its packet
from the MAC buffer to the PHY, and modulates the transport block
to transmit over the air on the allocated radio resource (9.

The MAC layer schedules the packets for transmission over the
air in the MAC buffer. Through various logical channels, MAC dis-
tinguishes between control and data traffic and schedules using
Logical Channel Prioritization Scheme. In case multiple applications
are sending data over the network, the time packets sometimes have
to wait at MAC buffer to be scheduled for transmission ) with
TriACsched latency. If the device-transmitted signal corrupts over
the wireless channel and the base station cannot decode it, it re-
quests a retransmission through a process called Hybrid Automatic
Repeat Request (HARQ). Each retransmission incurs additional
latency of Tgarg- Therefore, the total UL latency is:

TUplink =Tprx + Tsg + Tgrant + TrmACsched + No.Retx X THARQ

15G uses Time Division Duplex (TDD) to allocate uplink (UL) and downlink (DL) slots
for network users.
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Figure 2: NB-IoT packet transmission differs between UL and DL. In UL, the device transitions from idle to connected via the
SR procedure before sending data. Both the SR and UL packets incur delays from HARQ, DL grant reception, and scheduling—
roughly 2x higher than if the device were already connected. In contrast, DL packets are sent immediately after the base station
issues a DL grant, avoiding idle-to-connected and MAC-layer delays on the device side.

Downlink Processing Delays. In the downlink path, since the
base station has a complete view of available network resources,
there is no requirement to acquire a grant from the network for
transmission by the base station. The base station receives DL data
at Service Data Adaptation Protocol (SDAP) layer (®), it schedules
it to the available DL resource blocks (9 and sends it to the user
device on the next available DL slot in TDD frame . Because of
high downlink demand, TDD typically allocates more slots to DL,
making them more readily available than UL slots. As a result, UL
transmissions often wait longer for scheduling. However, like UL,
the DL path is still affected by HARQ retransmissions and DRX
delays. The total DL latency would be:

TpownLink = IDRX + TMACSched + THARQ

Asymmetric Latency in Time Transfer Model. Due to differ-
ent processing pathways, the UL and DL latency in the 5G net-
work is highly asymmetric. As a result, the two-way time trans-
fer model adds a huge error in clock offset calculation. Consider-
ing 0 as NTP clock offset, ty, t1, t2, t3 as device and server times-
tamps, and assuming that the UL and DL delays are different i.e.
8 = Tprop(ur) — Tprop(DL), the extra error in NTP attributed to

asymmetry is, Error = = §/2, and therefore,
0= % [(t1 — to) + (t3 — t2)] — /2. However, NTP cannot measure
or correct this asymmetry, so it absorbs it as clock error, resulting
in high offsets. In cellular networks, up-link latency can be up to
78% of the total Round Trip Time (RTT) of time transfer [54], accu-
mulating time error of up to 28%. As IoT devices use inexpensive
crystals (10-100 ppm), the clock drift, combined with network delay
error, prevents predictable synchronization over 5G networks.

Clock Offset and Drift under Asymmetric Delays. A 1 ppm
crystal oscillator drifts only about 1 s per second (~ 1ms per
1000 s), so in isolation this looks easy to correct with an occasional
resync. In NB-IoT, the main problem is not the slow drift of the
crystal, but that uplink/downlink (UL/DL) asymmetry makes it
hard to measure and correct that drift in the first place. The esti-
mated offset between the device clock and the reference can be
written as 0 = (tz_[l);(t“_m + SUngDL, where 8y, and dpp, are
the uplink and downlink delays. In a symmetric link, Sy & dpL

TpropwL) —IProp(DL)
2

and the second term is near zero. In NB-IoT, these two delays can
differ by hundreds of milliseconds because of wake-up latency,
grant scheduling, retransmissions, and queuing. That bias term
5UL;5DL is therefore orders of magnitude larger than the ppm drift
(see Fig. 4). Crucially, this means that simply syncing more often
does not fix the problem: the two-way exchange itself is biased by
UL/DL asymmetry, so every resync can still report the wrong offset
unless the asymmetry is measured or predicted. This is exactly
what SYNCHRONB addresses.

4 Timing Uncertainty Analysis

The fluctuating and asymmetric nature of the cellular wireless
link [66] introduces significant time synchronization errors, build-
ing upon the drift caused by the low-resolution crystals typically
found in low-cost IoT hardware. Time synchronization protocols,
such as NTP, are fundamentally based on the assumption of sym-
metric network delays for accurate time offset estimation. Our
analysis shows that four cellular-specific phenomena induce high
asymmetry and hence sync errors: (1) unreliable wireless channel
quality leading to retransmissions, (2) competition for shared wireless
resources, (3) wake-up delays from power-saving modes, and (4) in-
ternal transmit queue contention in the device. Here, we characterize
these factors, identify the root cause, and highlight the challenge.
Experimental Setup. We used different Hardware Platforms® to
conduct experiments on NB-IoT deployments with contrasting
timekeeping hardware and firmware stacks. The Nordic nRF9160-
DK [43] combines a 64 MHz high-accuracy crystal oscillator (HFXO)
specified at 1 parts per million (ppm) with an Arm Cortex-M33 run-
ning Zephyr Real-Time Operating System (RTOS). The HFXO’s
tight tolerance keeps drifting below a few microseconds per second,
while Zephyr’s date-time API and the nRF9160’s built-in LTE-M/NB-
IoT modem telemetry provide accurate timestamps and network
metrics. We use Zephyr’s default tick-based clock as our timebase
and read modem-generated GPIO timestamps directly for SNTP ex-
changes and latency measurements. Time is tracked using a 32-bit,

2The ST B-L462E-CELL1 board has an internal multispeed oscillator (MSI) factory-
calibrated to only +1% accuracy.
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Table 2: Definition of Radio-Link Metrics

Metric (Unit) | Definition / Formula
RSRP (dBm) Reference Signal Received Power: average power of the reference cell signal
RSRQ (dB) Reference Signal Received Quality: (N X RSRP)/RSSI, N is no. of resources
RSSI (dBm) Received Signal Strength Indicator: received wideband power with noise
SNR (dB) Signal-to-Noise Ratio: 10 log;, (Psignal/Pnoise)
Pathloss (dB) Path loss: attenuation between base station and device, (Pyy ref — RSRP)
Tx Reps (—) HARQ retransmissions count at the MAC layer for a given uplink PDU
g---110 ms
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Figure 3: During sleep, the first synchronization packet in-
curs a 600 ms ramp-up delay, causing a 110 ms clock offset.
Upon entering connected mode, the second packet instantly
corrects this offset, reducing the time difference to -13 ms.

1 MHz hardware timer plus a software epoch offset, making this
platform challenging for accurate synchronization.

NTP and Network metrics: We use off-the-shelf SNTP implementa-
tions compatible with the device’s RTOS. For each SNTP exchange,
we log the computed clock offset from the time server, the measured
RTT, and all four NTP timestamp fields directly over the serial port.
We also query the modem’s radio link status capturing common net-
work metrics such as RSRP, RSRQ, RSSI, SNR, and retransmission
counts (Tx Reps) whose definition and details are in Table 2.
Ground Truth: To establish an accurate reference, we feed each
device a one-pulse-per-second (1 PPS) signal to trigger a timestamp
derived from the device’s local time. On the Nordic, the 1 PPS pulse
drives a GPIO external-interrupt (EXTI)3. A post-processing Python
script aligns all logs to the host clock, enabling offset calculation
and synchronization accuracy assessment.

Dataset: Across twenty-eight experiments, we collected ~ 44190
minutes (30.6 days) worth of data, of which ~ 40% was under good
network conditions and the rest were under poor conditions.
Sleep-State Wake-Up Latency. NB-IoT devices employ two nested
power-saving modes: eDRX and PSM to conserve battery. In eDRX,
the modem periodically listens for downlink transmission in the
RRC (radio resource control layer) idle state. In PSM, it enters deep
sleep without periodic wake-ups. Exiting either state requires an
RRC resume handshake. Our experiment (refer Figure 3) reveals a
latency of ~ 600 ms (ramp-up delay) for the RRC transition to the
connected state. Once connected, the device resumes its normal
mode of transmission and reception.

To evaluate how PSM and eDRX affect NTP precision, we send
two NTP packets while the device is in sleep mode. As shown
in Figure 3, the first packet shows a 110 ms offset due to wake-up
latency when the modem reconnects. The second packet, sent while
the modem stays connected, reduces the offset to -13ms, correcting

3, while on the ST B-L462E-CELLI, pps is captured via the MCU’s hardware timer
input-capture channel

Conference’17, July 2017, Washington, DC, USA

x10°

() S
725 @ O
é Congested Network During Day
© 20
2
© 15| High Availability at Night
()
=10
(a)
Sos :
o . :
O oo i

3:00 AM 6:00 AM 9:00 AM 12:00 PM
Time (hrs)

Figure 4: High offset in daytime due to resource contention.

the initial error. Here, ‘offset’ refers to the difference between the
local clock and the NTP reference. We observe that the first NTP
packet experiences wake-up latency during modem reactivation.
However, once connected, the second packet avoids this delay, and
realigns the local clock with the NTP reference.

Challenge 1: Power-saving wake-up delays of hundreds of mil-
liseconds cause offset spikes during single exchanges, which NTP
mistakes for clock drift, degrading accuracy after each resume.

Resource Contention at the Base Station. All devices within the
coverage area of a single NB-IoT base station (called a “cell”) share
the same limited radio resources. Before an IoT node can send its
NTP packet (every uplink transmission), it must issue a Scheduling
Request (SR) and wait for the base station to grant uplink permis-
sion. The base station’s scheduler then grants a bundle of Resource
Blocks (RBs) in 1 ms Transmission Time Interval (TTI) before the
device can send. When only a few devices are active (during night
hours), SR— grant (scheduling-request to grant latency) delays
average around 25 ms [54], and clock offsets remain below 10 ms
as shown in Figure 4. However, as more devices join in the morn-
ing (for example, students arriving on campus), the base station’s
scheduler is forced to arbitrate among many SRs and divide the
same limited RBs among many contenders, causing grant delays to
grow unpredictably into hundreds of milliseconds [34].

To quantify this effect, we place two identical NB-IoT nodes 10m
from the same base station and logged SR-to-grant latency and
NTP clock offset every 300s over a 14-hour window (00:00-14:00).
As shown in Figure 4, mean offset stays around 80 ms during the
low-traffic period (00:00-08:00). Shortly after 09:00, when campus
activity surges, the scheduler’s grant delays spike, and clock dif-
ferences jump up to 2.5 s. Because these delays occur only on the
uplink, NTP attributes them entirely to clock skew, leading to large,
erratic synchronization errors.

Challenge 2: Peak-hour resource contention inflates uplink
grant delays into the 0.1-1 s range, breaking NTP’s assumption
of symmetric delays and causing multi-second clock errors.

Channel-induced Retransmissions. NB-IoT further violates asym-
metry assumptions under poor signal conditions [44]. For reliability,
NB-IoT uses Hybrid Automatic Repeat Request (HARQ) at the MAC
layer [2]. A data packet that fails to get decoded at the receiver end
is requested to be retransmitted through the HARQ process. The
packet retransmission can occur in an uplink or downlink path.
Nevertheless, it adds an asymmetric latency in the total RTT. Such
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Figure 5: Packet Retransmission due to poor signal quality.

an asymmetry in RTT makes the NTP calculated offset inaccurate
and ends up converging to the wrong time.

In Figure 5, during the relatively stable portion of the trace (0-3
h), there are no observed HARQ processes, and the NTP offset stays
tightly bound around 0 ms offset. However, once the channel enters
towards volatility (~ 3-16 h), the HARQ layer invokes substantially
more redundancy rounds: peak retransmission counts reach 16,
with a sustained mean above 4. The offset spikes to ~ 300 ms as re-
transmissions surges to 16. After 16 h, network conditions improve,
retransmission counts subside back to 0, and the offset converges
back toward its nominal envelope. The aggressive HARQ activity
is a first-order driver of NTP timing error in cellular backhaul and
it impacts NTP’s performance quite significantly.

Challenge 3: HARQ undermines synchronization accuracy by
introducing asymmetric retransmission delays.

Internal FIFO Queue Contention in Modems IoT devices typi-
cally carry both latency-sensitive traffic and bulk non-critical data
streams simultaneously. Inside an NB-IoT modem, every outgoing
uplink packet, whether a small NTP sync frame (48 bytes) or a
larger telemetry report, is broken into RLC PDUs and placed in a
single MAC-layer first-in-first-out (FIFO) buffer. Each PDU then
waits its turn for the scheduler, which can only transmit one 1 ms
TTI’s worth of bytes (typically 32-64 B) per interval [2]. Under
normal conditions, a handful of PDUs clear in a few milliseconds,
and time-sync PDUs see negligible queuing delay. In a FIFO queue,
if non-critical telemetry PDUs occupy the front positions, every
packet behind them (including an NTP sync frame) must wait its
turn, creating a head-of-line blocking. These internal queue delays
are particularly invisible because NTP cannot distinguish device-
side queueing delays from network or clock drift. NTP interprets
every millisecond of delay as network latency or clock skew. Delays
of tens of milliseconds at the MAC layer therefore compound any
wireless asymmetries and lead to unpredictable, hard-to-correct
synchronization errors.

Challenge 4: FIFO queue delay under mixed traffic stalls time-
sync packets by 10-50 ms, injecting invisible device-internal skew
that compounds network-layer errors.

Clock Drift and Variance Conventional low-cost IoT boards are
known to ship with +20 — 50 ppm and 32-KHz or 26-MHz crystals.
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Figure 6: SYNCHRONB system architecture. The clock drift
analyzer triggers a time sync when needed, and the network
predictor determines whether to use normal or burst sync
based on network conditions.

For a 26 MHz crystal specified at +40 ppm, its time offset will grow
by 24 ms / 10 min.

With a 5-minute sync interval, the crystal’s unchecked drift, on
the order of 12 ms, would exceed a typical +e ms accuracy bound
(for example, +10 ms), thereby violating tight timing requirements
and risking loss of critical functionality.

In practice, two boards with identical crystals from the same
reel exhibit different drift trajectories [49]. Additionally, physical
factors such as temperature, aging, and radiation level also increase
the variance clock frequency, manifesting in short-term jitter and
longer-term drift shifts [49]. These cannot be bounded by simple lin-
ear models due to temporal correlation. Variance creates a widening
“uncertainty band” around the predicted drift line, and that band
can exceed timing requirements well before the next scheduled
sync. Failing to account for variance either forces frequent syncs
(wasting power and bandwidth) or risks missing rapid drift shifts.

Challenge 5: Clock error grows both linearly (drift) and stochas-
tically (jitter), creating an uncertainty band that can exceed syn-
chronization accuracy requirements.

5 Design

In §4, we identified five independent challenges to accurate time
synchronization in NB-IoT. To address them, we design SYNCHRONB:
an on-device framework that delivers sub-10 ms synchronization
within the strict energy and bandwidth constraints of NB-IoT. At
its core, SYNCHRONB orchestrates a five-stage synchronization loop
that continuously adapts to both local clock dynamics and exter-
nal network variability. As shown in Figure 6, this loop is built
on two complementary capabilities: first, proactive drift analyzer
forecasts when the crystal oscillator is about to exceed its error
tolerance—-allowing SYNCHRONB to resynchronize before time sync
deviates; second, adaptive network predictor monitors link condi-
tions to detect when traditional single-packet synchronization may
silently fail. Each sync interval begins with the MCU collecting
recent clock offset estimates and radio telemetry. These inputs are
fed into two compact predictors: one projecting the crystal’s drift
trajectory, and the other assessing wireless link stability. Their out-
puts jointly determine whether to initiate a standard or resilient
time synchronization mechanism.

This decision process drives five tightly integrated modules. As
shown in Figure 6, first the drift analyzer (§5.1) models the crystal
drift and schedules resyncs before error bounds accumulate. When
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action is needed, adaptive wake-up scheduler (§5.2) advances the
radio boot time and injects a preemptive keep-alive ping, mitigat-
ing ramp-up latency. To ensure timely uplink access, preemptive
grant acquisition (§5.3) issues scheduling requests just ahead of
the time sync window, and the grant is allocated. When the wireless
link quality degrades, the network predictor (§5.4) invokes burst
synchronization mode. Finally, the high-priority queue (§5.5)
elevates time-sync packets above bulk traffic to avoid contention
delays while maintaining fairness.

5.1 Predictive Clock Drift Management

Crystal clocks produce two error sources, a deterministic offset
that accumulates linearly and a stochastic jitter (§4) whose am-
plitude and temporal correlation differ across devices [21, 38]. A
fixed resynchronization interval cannot control both effects with-
out syncing very often, which would cost too much energy [3].
While prior time-sync protocols in GPS-enabled [40] or wired sys-
tems [17] leverage drift estimation to refine time corrections, we
continuously forecast per-device drift on constrained hardware. In
doing so, we implement a two-phase on-device module: first, we
select and preprocess features directly tied to oscillator behavior;
then, we train and deploy a compact model to forecast imminent
drift and decide when to sync.

5.1.1 Feature Selection. To reliably forecast crystal drift and avoid
needless synchronizations, we distilled the inputs to a few signals
that meet our design principles: First, direct physical relevance
requires us to utilize the local clock data i.e. the absolute differ-
ence between locally elapsed time and true time to capture drift
behavior. The offset x; is the absolute difference between the lo-
cally elapsed time and the corresponding true reference time at
measurement instance, given by: x; = |tjocal s — ttrue,¢ |- This offset di-
rectly quantifies the instantaneous deviation of the local clock from
the reference time. Low-overhead observability requires keeping
cost and power draw minimal. x; is obtained from existing firmware
telemetry. tirye,s is recorded by the reference device connected to
the MCU. #5c41; is logged by the MCU’s built-in clock. These mea-
surements do not require additional sensors, extra telemetry, and
complex cross-layer counters, utilizing a few microseconds of MCU
time per sample and consuming only a few dozen bytes of RAM.

Drift Factors. Crystal stability can also be influenced by external
and intrinsic factors such as temperature, supply voltage, phase
noise, and aging. While these parameters contribute to long-term
drift, most commercial NB-IoT modules do not expose such teleme-
try through standard interfaces, and adding dedicated sensors would
increase cost and energy overhead. To preserve portability across
hardware, SYNCHRONB focuses on a minimal, device-only feature
set derived from offset history. This design choice keeps the model
deployable on low-cost NB-IoT devices while remaining compatible
with optional external inputs, which enhance prediction accuracy
without modifying the control loop.

5.1.2  Model Selection. The local clock error has two parts: a linear
drift and a random jitter component. In practice, the short-term
changes in this error are very noisy and not purely random. This be-
havior is shaped by network and device conditions and persists over
multiple sync cycles. On the network side, factors such as paging
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delay, uplink grant scheduling, retransmissions, and queuing can
introduce sudden one-way timing jumps; when the cell is congested
or signal quality is poor, these errors can repeat for several succes-
sive syncs. On the device side, temperature and supply variation
can subtly change oscillator stability over time. Traditional drift
estimators, such as regression and Kalman filtering, assume stable
jitter and require frequent, fixed-interval timestamp updates. They
model smooth drift well but do not capture noisy jitter, and they
perform poorly when samples are sparse. Because NB-IoT exhibits
both long-term drift and short-lived jitter patterns that depend on
recent history, we treat drift prediction as a sequence forecasting
problem. Given a short history of recent offset samples, we predict
the future error and trigger synchronization only if the predicted
error is about to exceed the required accuracy.

Simple linear models and ARIMA [9, 42] can capture the long-
term drift trend, but they assume that the noise is stable over time.
As a result, they miss device-specific timing patterns and react
slowly when the noise changes. Kalman-based estimators and their
variants [26, 28] work well when the process and measurement
noise are well modeled and when updates arrive often, but they
require careful tuning that does not transfer across hardware or net-
work conditions. They also lose accuracy when the timing samples
are sparse or irregular. Statistical machine learning approaches treat
clock drift and jitter as random variables and update their estimates
using likelihood models learned from past observations [62]. These
methods can improve robustness but they still assume frequent
timestamp exchanges and well-characterized link delays. These
constraints point to a recurrent model that can learn how drift
evolves over time, suppress noise bursts, and update its internal
state even when samples arrive at irregular intervals.

We choose a single-layer Long Short-Term Memory (LSTM) [23]
because it can use recent history to recognize both slow drift and
short-lived jitter bursts, does not require regular timestamps, and
remains small enough to run on the device. An LSTM maintains
an internal state (the memory cell) that lets it track slow drift over
time while also modeling short-lived bursts of jitter, rather than
smoothing them away. Its gating mechanism also lets it selectively
“forget” outdated behavior when conditions change (for example,
due to temperature or supply variation) without us having to manu-
ally retune process noise. Unlike linear or Kalman-based estimators,
the LSTM does not assume fixed noise statistics or require regular
sampling; it learns the device’s own offset dynamics directly from
recent history and produces a prediction of future error.

At time t, the model consumes a short window of normalized off-
set samples x¢ =[x\ |, ..., x/°"™] and outputs a scalar forecast
Apred- A synchronization is triggered only when Ayeq > €.

Online Adaptation. To accommodate gradual aging or slow envi-
ronmental shifts, SYNCHRONB supports lightweight online adapta-
tion. To ensure responsiveness to long-term drift trends, the model
parameters are periodically updated using an exponential moving
average over recent offsets. This process runs infrequently, only
once a day, and adds negligible overhead on the device.

Our drift analyzer combines streamlined feature selection with
a compact LSTM model, enabling NB-IoT devices to predict clock
drift accurately. By triggering synchronization only when needed,
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Algorithm 1 Adaptive Wake-Up Scheduling

Require: Histogram H, energy cap Emax, guardrail &, next sync time Zsync
1: A « Percentile(H, 95%)
2: SETTIMER(Zsync — A, WAKEANDSYNC())
3: function WAKEANDSYNC
d «— ModemWakeLatency ()
INserT(H, d)
if ENERGYUSED > aEpax then
PERFORMSYNC
else
9: SETTIMER(#sync, PERFORMSYNC())
10: end if
11: end function

> RRC resume delay

QN Yk

our approach reduces energy and bandwidth usage without com-
promising time accuracy.

5.2 Adaptive Wake-Up Scheduling

After forecasting when the local clock will exceed its drift budget,
in this section, we bound the RTT variance caused by large modem
wake-up delays (as discussed in §4). NB-IoT devices conserve power
by entering eDRX or PSM sleep modes, but waking the modem
adds on the order of 100 ms of one-way RTT variance (§4). A naive
fix is to hard-code a long lead time (A seconds) before each sync.
In theory, a fixed lead time, for instance, A = 3s would cover
every modem wake-up and eliminate the cold-start penalty. In
practice, however, any single static margin is either wastefully long
or woefully insufficient. Due to variable wake-up latency, the
modem attach delays fluctuate with cell-edge reselection, tracking-
area updates, and neighbor scans [54]. Any A large enough to cover
the worst-case transition will be wastefully long most of the time.
To balance these, in SYNCHRONB we employ a feedback-driven
adaptive wake-up scheduler (captured in Algorithm 1). The sched-
uler maintains a latency histogram H to track recent wake-up
delays. For each synchronization event, the device sets a coarse
timer (A (coarse)) based on the 95 percentile latency derived from H,
waking only as early as experience demands. This percentile-based
margin automatically adapts to prevailing conditions: if wake-up
delays grow, Acoarse increases; if they shrink, they decrease. Upon
waking (WakeAndSync()), the modem’s actual wake-up latency
(RRC resume delay) is measured and immediately used to update
the histogram, ensuring the percentile estimate remains up to date.
To prevent excessive energy consumption, the scheduler checks
whether the radio-idle energy consumed has exceeded a predefined
fraction a of the synchronization energy budget (Emax). If this
threshold is breached, an immediate synchronization is performed,
effectively limiting energy usage. By continuously updating H,
re-computing Acoarse, and enforcing an energy guardrail, this self-
tuning loop provides short wake-up time bounds while consuming
only the energy necessary under prevailing network conditions.

5.3 Preemptive Resource Allocation

SYNCHRONB next tackles the remaining source of asymmetric delays
i.e. the uplink scheduling delays under network contention. In §4,
we showed that in NB-I0T, each synchronization packet must first
issue an SR and await a grant before it can transmit. Under light load,
this handshake completes in a few milliseconds [54], but as cell load
grows, SR — grant delays grow causing NTP to misattribute those
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delays to clock skew. A simple always ask early policy (sending
every SR one or two SR-periods ahead) either wastes scarce RBs
when the cell is idle or, if every device does it, amplifies contention
and collapses fairness. Instead, in SYNCHRONB we introduce an
adaptive, two-phase closed-loop reservation scheme that pulls
airtime only when contention is predicted:

(1) Contention estimation. At each sync interval, the network
predictor (§5.4) computes a short-horizon grant-delay risk from
recent radio metrics (RSRP, RSRQ, SNR, Tx Reps, time of day). We
discuss this more in §5.4. If this risk exceeds a tunable threshold
¢, which we tune empirically, the upcoming sync slot is flagged as
contention-likely.

(2) Just-in-time SR advance. Only when a slot is marked contention-
likely does the modem issue its SR exactly one SR period (5-10
ms [54]) before the scheduled sync. This ensures that the uplink
grant arrives immediately before the sync packet, avoiding both
idle RBs and SR blocking.

After each synchronization, SYNCHRONB observes the actual
SR — grant delay; if it still exceeds one SR period, we decrease ¢
(making future early-SR decisions more frequent); if it consistently
falls within a single period, we increase ¢ (deferring early SRs). This
feedback loop automatically tracks both daily load patterns (pre-
dictable) and transient hotspots without manual tuning. It preserves
fairness because slots not marked as high contention follow the
standard SR timing, so all devices continue to share the scheduler
equitably. It reduces worst-case SR — grant to a single SR cycle,
reducing synchronization errors by orders of magnitude [54].

5.4 Volatility-Driven Burst Synchronization

SYNCHRONB now targets the asymmetric delays introduced by
HARQ retransmissions as explained in §4. Standard SNTP exchanges
treat any extra uplink delay as clock skew. To counteract this, we
recast sync timing as a classification problem, predicting when link
conditions will violate our symmetric-delay assumption (we call it
“Network Predictor”). When such volatility is detected, SyYNcHRONB
switches to resilient-sync mode, which we later explain.

5.4.1 Feature Selection: To reliably flag when asymmetric link de-
lays will break single-packet synchronization, we choose features
that satisfy the same design principles used in the drift analyzer.
To provide direct physical relevance, we monitor six radio-layer
metrics whose behaviors directly drive retransmissions and sched-
uler delays. RSRP and RSRQ quantify signal strength and quality,
SNR measures noise margin, path loss reflects propagation con-
ditions, uplink repetition count indicates the configured HARQ
redundancy (and thus expected retransmissions), and time of day
serves as a coarse proxy for diurnal cell load variations. Together,
these features capture the principal factors driving retransmissions
and scheduler delays.

For low-overhead observability, all metrics are natively ex-
posed by the modem’s standard attention telemetry interface. Sam-
pling them every sync interval requires no extra sensors, no firmware
modifications, and only ~ 200us of MCU time plus a few dozen bytes
of RAM for rolling buffers [14]. Essentially, stream orthogonality
should prevent both predictors’ cross-contamination. To do so, we
exclude any clock error or latency values from this feature set. By
keeping the network predictor blind to clock behavior, we prevent
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(highlighted), with further packets yielding marginal gains.

information leakage, while focusing solely on link dynamics, and
not conflate drift events with network anomalies.

5.4.2  Model Selection. We need a classifier that recognizes tem-
poral micro-bursts in the six-dimensional feature stream and exe-
cutes in under a few milliseconds on our MCU, to predict network
volatility. After evaluating several candidates, we analyzed gradient-
boosted trees [10], static convolution neural network (CNN) [32],
recurrent neural network (RNN) [23], and clustering methods like
K-means [36] or Gaussian Mixture Models [13], but each fell short,
trees and clustering ignore temporal order [8], static CNNs require
extensive feature engineering [32], and RNNs incur unacceptable
latency and memory overhead [24]. These observations led us to
adopt a causal Temporal Convolutional Network (TCN).

The TCN uses causal, dilated 1-D convolutions to learn both
short- and mid-range patterns that come before asymmetric delays
such as retransmissions or scheduler stalls. This lets it model tran-
sient link behavior while ensuring that each prediction depends
only on past observations. Our implementation has three layers
with kernel size 3 and dilations of 1, 2, and 4, and it fits in under
8KiB of flash and less than 1KiB of RAM. The model is trained
offline on labeled synchronization outcomes from different link
conditions and outputs a probability p that the link is “volatile.”
When p exceeds a threshold ¢, the device switches to burst syn-
chronization. This design keeps inference causal, lightweight, and
easy to interpret, so it can run on NB-IoT hardware.

5.4.3 Resilient Synchronization Strategy. We implement a resilient-
sync strategy to mitigate the unpredictable, uplink-only delay spikes
caused by HARQ retransmissions. Transmitting a burst as N con-
secutive SNTP requests instead of a single packet, SYNCHRONB
increases the success rate. The resultant offset with the smallest
absolute value is chosen, on the premise that it encountered the
least network delay.

At each sync interval, we first compute the link-volatility score
p; if p > ¢ (empirically set to 0.3 to balance false positives and
missed detections), we launch a burst of N requests, spacing them
by one 1 ms TTI plus a 2 ms processing gap to avoid internal modem
state collisions. We then gather the n offsets 01, 02, . . ., 0, and apply
a minimum absolute effectively filtering out outliers caused by
HARQ loops or grant tail delays. Through our experiments shown
in Figure 7, we set N = 3 as a reasonable compromise between sync
accuracy and higher power and bandwidth consumption.

5.5 Priority-Based MAC Queuing

After fixing all the other sources of asymmetrical delay, SYNCHRONB
fixes MAC queuing delay caused by intra-device contention dis-
cussed in §4. Traditional network-side remedies, like dedicating a
5G slice or a high-QoS bearer [20], impose heavy RRC signaling and
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can still be pre-empted by other high-priority flows. Rather than cre-
ating new radio bearers or slices, which incur extra RRC signaling
and still risk preemption [20], we implement fine-grained priori-
tization entirely inside the existing Data Traffic Channel (DTCH).
We split the DTCH into configurable number of "n" logical queues
inside the MAC layers; a High-Priority Queue (HP-Q) for time-sync
frames and a Best-Effort Queues (BE-Q) for all other traffic. When the
application constructs an SN'TP request, it tags the packet for HP-Q
insertion. During each SR, the modem reports HP-Q occupancy
before BE-Q in its buffer-status reports (BSRs), the very next uplink
grant clears one HP-Q PDU, before any BE-Q traffic is scheduled.
This prioritization reduces internal queuing delays and ensures
deterministic priority for time-sync packets. If the network is sta-
ble, a lone time-sync PDU enters HP-Q, bypasses any backlog in
BE-Q, and is scheduled in the very next TTI, bypassing all other
application data with higher scheduling priority.

Performance under degraded conditions. Under volatile net-
work, the network predictor suggests a burst sync, i.e., N consecu-
tive SNTP frames. Flooding HP-Q with all N PDUs would starve
other applications of resources. To ensure fairness, we admit only
the first PDU of each burst into HP-Q; the remaining PDUs enter
BE-Q. Each PDU carries two timers in MAC metadata: an aging
window (Tj), that tracks how long the PDU waits at the head of
HP-Q (one SR period, ~ 5-10 ms [54]). A slack window (Ts), that
measures time in BE-Q (two grant intervals, ~15 ms [54]).

e HP-Q. While the Ty, has not expired, the packet stays in HP-Q
and is immediately scheduled upon grant availability. If Tj,;, elapses,
because another PDU pre-empted the grant, the packet climbs down
into BE-Q, resetting its timers.

© BE-Q. When a BE-Q PDU’s slack timer Tg, expires, it re-promotes
into HP-Q. This alternating promotion/demotion guarantees that
exactly one sync PDU occupies the high-priority path at a time
while naturally interleaving burst traffic with normal payloads.

5.6 SYNCHRONB: Putting it all together

At each interval, the control loop of SYNCHRONB first examines
recent clock offsets and uptime in drift analyzer module and pre-
dicts whether the clock’s accumulated error will breach our set
threshold, if not, the loop can defer syncing; otherwise, it triggers
a sync. Once a sync is required, our adaptive wakeup sched-
uler uses its learned histogram to rouse the modem just in time
and injects a short keep-alive ping to eliminate the unpredictable
RRC handshake tail. Next, preemptive SR module requests pre-
cisely one SR period before the SNTP packet, that the uplink grant
lands immediately when the time message goes out. As the SNTP
exchange proceeds, our network predictor simultaneously evalu-
ates link volatility; if it flags abnormal HARQ or scheduler delays,
the loop switches into resilient burst sync mode. Finally, at every
transmission, the high-priority queue guarantees that each sync
frame, whether single or burst, clears the MAC’s FIFO ahead of
bulk telemetry, reducing the MAC queuing delays.

6 Implementation

We implement SYNCHRONB on the nRF9160 IoT board running the
Zephyr RTOS. All the traces, GPIO event logs, clock, and network
metrics are captured using the same experimental setup listed in
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§4. The SyNcHRONB software stack comprises of two primary mod-
ules. (1) A synchronization manager, running as a Zephyr thread,
captures the wake-up timers, drift checks, scheduling-request in-
jections, and SN'TP exchanges. (2) Two on-device machine-learning
predictors on TensorFlow Lite Micro [57] for the efficient and
lightweight execution of LSTM for drift prediction and a TCN for
network-volatility classification. The predictive models are fully
quantized to 8-bit integers and execute without floating-point hard-
ware or dynamic memory allocation. Each inference requires only
a few hundred multiply-accumulate operations, the LSTM occupies
~ 6.8kB of flash memory, and the TCN ~ 9kB, well within the limits
of typical NB-IoT MCUs.

We trained our models on the dataset described in §4. This dataset
is large and diverse, enabling rapid convergence and yielding very
high test accuracies. Inference runs entirely on the board’s Cortex-
M3, with no dynamic memory allocation or floating-point support
required. LSTM and TCN run on parallel threads, invoked by the
synchronization manager at each scheduled interval, and neither
model stalls the radio stack or jeopardizes real-time deadlines.

To keep both models up to date without overburdening the de-
vice, we adopt a hybrid update strategy. After each sync, a light-
weight bias correction adjusts the LSTM’s output based on the latest
prediction error, and the TCN’s volatility threshold is shifted by a
small factor towards the observed grant delays. Periodically, once
per day or when the device is charging, we download a quantized
weight patch for the TCN over the cellular link, applying it in place
to refresh its parameters. Meanwhile, the LSTM receives an optional
one-step gradient update using the most recent offset history for
fast, in-system backpropagation. This continual, on-device adapta-
tion keeps both predictors tightly aligned with evolving oscillator
behavior and network dynamics, all while consuming only a few
hundred microjoules per patch.

The drift predictor is a lightweight two-layer recurrent network
designed to run on constrained IoT hardware. It consumes a 10 X 1
input vector of the most recent clock-offset measurements and
outputs a one-step ahead estimate of drift. A single LSTM layer
with 32 hidden units first processes the time series, compressing
both the slow, linear drift and faster, stochastic jitter into a 32-
dimensional hidden state. A final fully connected output layer then
projects this embedding to a single scalar (A,¢q), representing
the predicted drift over the next interval. We evaluate the drift
predictor’s short-term accuracy in Figure 8, when forecasting 10-
30 s ahead, this model routinely achieves sub-millisecond error.
By comparing A4 against our threshold ¢, the synchronization
manager can confidently schedule resynchronization only when
the clock is forecast to exceed its allowable error.
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Figure 9: Training and validation AUC of the temporal con-
volutional network over five epochs.

We implement our network predictor as a TCN that classifies
each upcoming sync slot as stable or volatile, driving our choice of
single-packet versus resilient burst synchronization strategy (see §
5.4). TCN ingests a small window of recent network measurements
arranged as a 6 X 4 tensor (six metrics over four-time steps). Its
three TCN blocks each apply a causal 1D convolution (16 filters,
kernel size 3) with dilations of 1, 2, and 4 respectively, followed
by batch normalization and a residual shortcut to preserve fine-
grained temporal context. A global average-pooling layer reduces
the resulting 6 X 16 feature map to a 16-dimensional vector, which
a final fully-connected layer projects to a single probability p of
volatile. In Figure 9 we show, during offline training, our TCN
quickly converges, hitting a validation AUC of 0.68 by epoch 2,
further epochs yield only marginal gains and begin to overfit.

Overall, our SYNCHRONB implementation emphasizes minimal
resource utilization, tight integration with existing IoT platform
features, and robust, real-time responsiveness to maintain accurate
synchronization in practical cellular IoT deployments.

7 Evaluation

We evaluate the effectiveness of SYNCHRONB across several dimen-
sions critical to real-world cellular IoT deployment. Our evaluation
study answers the following key questions:

(Q1) How does SYNCHRONB perform compared to SNTP?

(Q2) How does SYNCHRONB maintain robust performance across
varying cellular network conditions?

(Q3) How do the individual components of SYNCHRONB contribute
to improved time synchronization?

(Q4) What is the overhead of SYNCHRONB on resource-constrained
cellular-IoT devices?

We find that SYNCHRONB cuts worst-case synchronization error

from 257 ms to 5 ms, and maintains robust performance under de-
graded network. Importantly, with minimal energy overhead and
bandwidth utilization, SYNCHRONB achieves reliable and consistent
sub-10ms clock synchronization over the cellular network.
Baseline. We use SNTP as the primary quantitative baseline be-
cause it represents the vendor-supported, deployable synchronization
option available on NB-IoT modules today. SNTP operates entirely
at the device side and requires no base-station or core-network mod-
ifications, which aligns with the scope of SynchroNB’s device-only
design. For fairness, all experiment conditions were evaluated un-
der identical hardware platforms, polling frequency, time stamping
paths, and modem power states.
Clock Accuracy. Accurate synchronization without exchanging
frequent two-way sync packets is crucial for low-power IoT devices.
To evaluate how effectively SYNCHRONB meets this challenge, we
benchmark its accuracy against the conventional SNTP protocol in
a controlled 6-hour experiment, comparing the frequency of sync
events and the resulting offsets.
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Figure 10: Comparison of synchronization accuracy between
SYNCHRONB and the standard SNTP baseline.
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Figure 11: Synchronization accuracy of SYNCHRONB under
good versus poor network conditions represented as RSRP.

As shown in Figure 10, the first sync under our system occurs
around 1.38 hours into the experiment. Notably, the second, third,
and fourth syncs occur in relatively quick succession. The cluster
of syncs shortly after the initial synchronization indicates an adap-
tive correction process, triggered by slight residual offset that was
quickly countered. This behavior underscores two strengths of our
system: (1) the LSTM-based drift analyzer effectively suppresses
unnecessary syncs under low drift conditions, and (2) when an off-
set is not fully corrected in a single sync, the drift analyzer quickly
detects the residual deviation and triggers follow-up corrections
before the offset spikes.

Despite significantly fewer syncs, our method maintains tight

synchronization with a mean clock difference of ~ 4ms between the
two boards over the full 6-hour run, compared to SNTP’s 14.78 ms.
Note that this is a result during good network conditions. This
shows that accurate timekeeping can be maintained without fre-
quent network communication, highlighting the synergy between
our drift-aware scheduling and adaptive sync strategy.
Network Variations. During good and poor cellular network qual-
ity, represented through different RSRP values, Figure 11 illustrates
that our solution consistently maintains stable synchronization
across both network states. Over a continuous 12-hour experiment,
6 hours under good network conditions and 6 hours under degraded
network, we observed mean clock differences of 4.6 ms and 5.3 ms
respectively. Notably, the adaptive network prediction mechanism
with the burst synchronization strategy significantly enhanced
synchronization stability during periods of poor network quality.
The network predictor effectively identifies episodes of network
volatility, prompting the devices to initiate burst synchronization.
Consequently, erroneous high-offset measurements from initial
packets were discarded, ensuring tighter overall synchronization.
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Figure 12: Clock-difference traces over the course of a night-
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SYNCHRONB (solid orange, left-axis) with the SNTP baseline
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Figure 13: Average clock-difference (ms) for five synchroniza-
tion strategies: SNTP Baseline, Adaptive Wake-up, Preemp-
tive Grant, Network Predictor-based Burst, and SYNcHRONB
under both Good and Bad network conditions.

We further assess synchronization performance under vary-

ing network loads by comparing day and night conditions. Fig-
ure 12 presents results from a long-duration experiment captur-
ing the performance of SYNCHRONB compared to standard SNTP.
During, nighttime, both approaches exhibit long-term stability, al-
though SyNcHRONB maintains significantly tighter synchroniza-
tion, achieving an average offset of 4.49 ms compared to SNTP’s
83.8 ms. In contrast, during daytime peak usage hours, SNTP ex-
periences substantial performance degradation due to increased
network contention. While SYNCHRONB also sees a slight reduction
in synchronization accuracy, the utilization of preemptive grant
requests and packet prioritization mechanisms effectively mitigates
the negative impacts of high contention. Consequently, SyNCHRONB
maintains a mean offset of only 6.22 ms, whereas SNTP’s offset dra-
matically rises to 154.3 ms with a 95th percentile exceeding 1.3
seconds. A key insight is that the drift analyzer within SYNCHRONB
triggers synchronization events strictly when necessary, signif-
icantly reducing the frequency of synchronization compared to
standard interval-based protocols. This intentional design mini-
mizes the risk of significant clock drift accumulation.
Ablation Study. To understand the effect of individual contribu-
tions and effectiveness of each component of SYNCHRONB, we per-
form a series of ablation studies. These experiments systematically
remove or isolate specific mechanisms within our synchronization
solution to quantify their individual impact on accuracy under vary-
ing network conditions. Specifically, we evaluate four key strategies:
(1) Adaptive Wake-up, (2) Preemptive Grant, (3) Network Predictor-
based burst, and the complete SYNCHRONB approach, against the
baseline SNTP protocol.

Figure 13 compares the average clock difference from long-
running experiments under both good and bad network conditions.
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Figure 15: Energy-accuracy trade-off for three synchroniza-
tion strategies (SN'TP baseline, adaptive wake-up, and SyN-
cHRONB) under (a) good and (b) bad cellular network condi-
tions. SYNCHRONB achieves the lowest average error while
reducing radio-on time in both scenarios.

The SNTP baseline exhibits significant errors, averaging a clock
difference of 17.0 ms under good conditions and dramatically wors-
ening to 257.3 ms under adverse conditions. Incorporating Adaptive
Wake-up alone slightly improves accuracy (12.6 ms in good condi-
tions, 249.5 ms in bad conditions). Adding the Preemptive Grant
further reduces offsets to 11.8 ms (good) and 113.6 ms (bad). The
introduction of the Network Analyzer significantly enhances per-
formance, achieving mean offsets of 8.5 ms (good) and 21.8 ms (bad).
The full SyNcHRONB approach, which combines all components,
yields the lowest average offset of 4.6 ms under good network con-
ditions and maintains performance at 5.3 ms under bad conditions.
These results highlight the essential roles of adaptive wake-up,
proactive grant requests, and network prediction in maintaining
robust synchronization performance across varying network states.
We further evaluate the predictive accuracy of our network pre-
dictor by comparing its performance with baseline methods. Fig-
ure 14 presents the Receiver operating characteristic (ROC) curves
for three distinct prediction approaches: (1) a naive threshold-based
using RSRP (we use RSRP < —90 as blanket threshold), (2) an unsu-
pervised K-means clustering baseline, and our TCN-based predictor.
The RSRP threshold-based method achieves an AUC of 0.38, indi-
cating poor discriminative ability. K-means clustering provides a
substantial improvement, achieving an AUC of 0.61, demonstrat-
ing that even basic unsupervised learning can offer meaningful
predictions. However, our TCN model outperforms both baselines,
reaching an AUC of 0.68, highlighting its capability to accurately
classify network conditions. These results underscore the effective-
ness of employing a specialized temporal model like TCN for robust
network condition predictions in dynamic environments.
Overhead Analysis. We evaluate the overhead introduced by Syn-
CHRONB in terms of energy consumption and bandwidth utilization.
Figure 15 shows the energy-accuracy trade-off under both good
and bad network conditions. Under favorable network conditions

Soomro et al.

Table 3: Bandwidth overhead (sync message count) and mean
offset under Good/Bad network conditions.

Strategy # Syncs (Good/Bad) Mean Offset (Good/Bad) [ms]
SNTP Baseline 120/ 120 16.98 / 257.26
Adaptive Wake-up 120/ 120 12.55 / 249.47
Pre-emptive Grant 120/ 120 11.85/113.63
NP-based Burst 135/ 165 8.50 / 21.77
SYNCHRONB 7/ 30 4.55/5.27

(Figure 15a), SYNCHRONB achieves an average clock difference of
4.6 ms, performing better than the SNTP baselines (17.0 ms) and the
adaptive wake-up strategy (12.6 ms). Based on the power profile
reported in the nRF9160 datasheet*, we estimate that each synchro-
nization exchange consumes approximately 150 mJ, which includes
radio transmission, reception, and modem wake-up energy. Over
the six-hour experiment, this corresponds to a total energy of 1.05]
under good conditions (7 exchanges) and 4.5 ] under poor condi-
tions (30 exchanges). Crucially, our approach achieves this accuracy
with substantially lower energy overhead, reducing the total syn-
chronization energy to roughly 8% of the SNTP baseline. Even
under degraded conditions (Figure 15b), the adaptive nature of Syn-
cHRONB mitigates sync errors (mean offset of 5.3 ms compared to
257.3 ms for SNTP), while maintaining 36% of the baseline energy
despite using burst synchronization to handle network volatility.

Table 3 shows bandwidth overhead through message count com-
parisons. Over a 6-hour experiment, the standard SNTP and adap-
tive wake-up approaches transmit 120 synchronization packets
each, irrespective of network conditions. In contrast, SYNCHRONB’s
intelligent synchronization strategy reduces bandwidth consump-
tion, requiring only 7 sync packets in good network conditions
and 30 in bad conditions. This adaptive reduction directly mini-
mizes network resource usage, highlighting SYNCHRONB’s practical
advantages for large-scale NB-IoT deployments.

Scope and Extensions. Our predictor handles short-term, time-
varying offset behavior caused by NB-IoT communication. In de-
ployments with large environmental changes or very long lifetimes,
we can also include external signals such as temperature or supply
voltage to improve accuracy. These additions do not require any
changes to the control loop and fit within the current design.

Our evaluation uses a controlled testbed to isolate NB-IoT timing
behavior under repeatable conditions. We acknowledge that we do
not evaluate urban or rural field trials, high-mobility handovers,
persistent connectivity loss, or multi-cell or multi-hop synchroniza-
tion. Still, the timing behavior and uplink/downlink asymmetry we
observe form the basis for extending SYNCHRONB to those settings.

8 Conclusion

This paper addresses the critical challenge of achieving reliable, sub
10-ms time synchronization on NB-IoT devices under unreliable net-
work conditions. Our preliminary analysis exposes the fundamental
causes of time errors resulting from highly asymmetric cellular net-
work delays that render conventional protocols like NTP ineffective.
We propose SYNCHRONB, an on-device, ML-powered framework
that anticipates and compensates for both network volatility and
clock drift. By dynamically adjusting modem wake-ups, and uplink

“Energy estimates are derived from the nRF9160 datasheet’s measured transmission
and reception current profiles, assuming a nominal 3.7 V supply.
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resource requests, SYNCHRONB transforms time sync from a passive
polling task into an intelligent, adaptive control loop.
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