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Abstract

Federated Prompt Learning has emerged as a communication-efficient and privacy-
preserving paradigm for adapting large vision-language models like CLIP across
decentralized clients. However, the security implications of this setup remain
underexplored. In this work, we present the first study of backdoor attacks in
Federated Prompt Learning. We show that when malicious clients inject visu-
ally imperceptible, learnable noise triggers into input images, the global prompt
learner becomes vulnerable to targeted misclassification while still maintaining
high accuracy on clean inputs. Motivated by this vulnerability, we propose SABRE-
F a lightweight, modular defense that filters poisoned prompt updates using
an embedding-space anomaly detector trained offline on out-of-distribution data.
SABRE-FL requires no access to raw client data or labels and generalizes across
diverse datasets. We show, both theoretically and empirically, that malicious clients
can be reliably identified and filtered using an embedding-based detector. Across
five diverse datasets and four baseline defenses, SABRE-FL outperforms all base-
lines by significantly reducing backdoor accuracy while preserving clean accuracy,
demonstrating strong empirical performance and underscoring the need for robust
prompt learning in future federated systems.

1 Introduction

Federated Learning (FL) [38] enables decentralized model training across multiple users while keep-
ing data local, thereby preserving privacy and reducing centralized risks. In FL, clients independently
train models on local data and share only model updates with a server, which aggregates them into a
global model. Due to its privacy-preserving nature, FL has been adopted in settings like Google’s
Gboard [2] for next-word prediction, Apple’s Siri [1] for automatic speech recognition, and WeBank
for credit risk prediction [57]]. Recent advances have extended FL to support more expressive models,
such as vision-language models, by integrating prompt-based learning [70, 29, [21].

Prompt learning is a recent paradigm that adapts large pre-trained models such as OpenAI’s CLIP
(Contrastive Language-Image Pretraining) [460] to downstream tasks by optimizing lightweight,
learnable input prompts instead of finetuning the full model. Originally developed in centralized
settings, prompt learning has shown impressive few-shot generalization, task transferability, and
reduced compute cost, particularly with vision-language models [70, 69]. Motivated by these
advantages, recent works have introduced prompt learning into FL [29,|58]], giving rise to federated
prompt learning (FPL). In FPL, clients independently optimize prompt vectors while keeping the
model backbone frozen, and share only these prompts with the server. This design greatly reduces
communication and memory overhead and enables efficient cross-client adaptation in multimodal
and heterogeneous environments.

'We will release the open source code with the final version of this paper.

Preprint.
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Figure 1: Backdoor attack on prompt-learning-based multimodal models. A learnable and impercep-
tible noise trigger is added to the image that results in a poisoned image embedding, which is then
used to generate the learnable prompts. This addition of noise causes the image features to deviate
from their respective text features in the embedding space, thereby causing misclassification.

Despite its appeal, FL is not inherently secure [31]. In practice, some clients may behave maliciously,
either by corrupting their local training data or manipulating model updates, to influence the behavior
of the global model [22, 48| 56 149, [11} 39, |61 [12} 13]]. A particularly insidious example is the
backdoor attack [41} 166, 4,156, in which an adversary injects carefully crafted inputs (called triggers)
into local training data (Figure [T)). These triggers cause the global model to misclassify specific
test-time inputs while preserving high accuracy on benign samples. Prior work on backdoor attacks
in FL has largely focused on traditional classification tasks in unimodal settings [41} 166], leaving the
security properties of multimodal and prompt-based FL systems underexplored.

While prompt learning in FL is gaining momentum, its security properties remain largely unexamined.
This raises a key question: how vulnerable is Federated Prompt Learning to backdoor attacks?
In this work, we show that prompt learners in FL are highly susceptible to backdoors, even when
model updates are limited to prompt vectors. We introduce a backdoor attack that inserts a learnable,
visually imperceptible trigger into a subset of clients’ training data. The attack draws inspiration from
BadClip [6] who design a trigger-based backdoor attack for prompt-learning in the centralized setting.
In our attack each malicious client has its own malicious trigger that pushes the prompt embeddings
toward a target label in CLIP’s semantic space, leading to high-confidence misclassification at
inference. The attack remains stealthy and retains high clean accuracy across clients, matching
performance observed in centralized prompt tuning. This demonstrates that Federated Prompt
Learning is vulnerable to trigger-based backdoor attacks even when a few clients act maliciously. To
the best of our knowledge, we are the first to study backdoor attacks in this setting, i.e., trigger-based
attacks in multimodal federated prompt learning.

Motivated by this, we design SABRE-FL (Selective and Accurate Backdoor Rejection), a lightweight
server-side defense tailored for prompt-based FL. Our key insight is that backdoored prompt vectors
yield representations that deviate from the distribution of clean data in CLIP’s embedding space.
SABRE-FL trains a detector offline, on an out-of-distribution dataset, to recognize these deviations.
Importantly, the detector does not require access to client data, labels, or downstream tasks. By
leveraging this separation in representation space, SABRE-FL identifies and filters poisoned updates
with high precision, maintaining clean model performance while eliminating backdoor impact.

Contributions: In our work, we address the critical issue of backdoor attacks in federated prompt
learning. In doing so, we make the following key contributions:

* We introduce the first backdoor attack specifically targeting prompt learning in FL (§3).
The attack injects a visually imperceptible, learnable noise trigger that is optimized to shift
prompt representations toward a target class semantically. The attack achieves high backdoor
success while preserving clean accuracy, and remains effective even when only a small fraction
of clients are compromised, revealing a vulnerability in prompt-based FL systems.

* Designing SABRE-FL: We propose SABRE-FL (§4)), a lightweight, generalizable defense
framework that detects poisoned prompt updates at the server using a classifier trained on
out-of-distribution embeddings. We formalize its representation-space decision boundary and
provide theoretical conditions for generalization.

* Comprehensive evaluation and analysis across five datasets and four defenses; Trimmed
Mean, Median, Norm Bounding, and FLAME (§5.2), shows that SABRE-FL consistently
outperforms existing methods by achieving lowest backdoor accuracy while maintaining clean
accuracy. t-SNE plots and ablations (§5.4) confirm its generalization and effectiveness under
diverse FL and prompt learning configurations.



2 Background and Related Work

2.1 Federated Learning (FL)

In FL [311 138]}, a central entity, known as the server, aims to train a global model, 69, using private
data distributed across multiple clients, without directly accessing their data. In each communication
round, the server selects n out of N available clients and sends them the current global model 6,
where ¢ denotes the round index. Each selected client & computes an update V% using its local dataset
Dy, and returns it to the server, which aggregates all updates using a predefined aggregation rule,
such as FedAvg [38].

In FedAvg, a client k fine-tunes 92 on their local data using stochastic gradient descent (SGD) for a

fixed number of local epochs E, resulting in an updated local model 6},. The client then computes
their update as the difference V}, = 0}, — 6} and shares V with the server. Next, the server computes
an aggregate of client updates, f,zz Using mean, i.e.,

Vggg = fmean(vike[n]})' 6]
The server then updates the global model of the (¢ + 1)** round using SGD and server learning 7 as:
AR T v @

2.2 Prompt Learning with Vision-Language Models

Vision-Language Models: Large vision-language models (VLMs), such as CLIP [46]], have demon-
strated remarkable generalization across diverse downstream tasks. By aligning images and text in
a shared semantic space, these models enable strong zero-shot and few-shot performance without
task-specific supervision. However, their size, often exceeding hundreds of millions of parameters,
makes traditional fine-tuning computationally expensive and bandwidth-intensive, particularly in
distributed or resource-constrained environments.

Prompt Learning [70]: Prompt learning adapts large pre-trained models to downstream tasks by
introducing a set of learnable prompt vectors that are prepended to the model input. During training,
only these prompts are updated, allowing efficient task adaptation while keeping the backbone
frozen. This reduces the number of trainable parameters and computational cost, making the approach
particularly attractive for few-shot and resource-constrained settings. Prompt learning has been shown
to be effective across multiple modalities [32} 69, [70]. In CLIP-based architectures, this involves
optimizing a set of context vectors V' = [vy,vs,...,v N]T € RV*e where each v; is a learnable
token embedding and e is the embedding dimension. Given an input image x and a class name
embedding ¢;, the image encoder f(x) and the text encoder g({V/, ¢;}) produce modality-aligned
representations. The prediction probability is computed using cosine similarity:

exp(sim(f (=), g({V, ¢i}))/T)
> exp(sim(f (@), g({V. ¢;1))/7)

where 7 is a temperature parameter and sim(-, -) denotes cosine similarity.

ply=il=x)= 3)

Prompt Learning in FL: The benefits of prompt learning mentioned above have motivated its
integration into the federated setting [29, 28, 168]. In federated prompt learning, each client optimizes
a local prompt vector while keeping the foundation model, e.g., CLIP, frozen, and transmits only the
prompt to the server for aggregation. This substantially reduces memory usage and communication
cost, making it feasible to deploy foundation models like CLIP in privacy-preserving, bandwidth-
limited environments. Such systems have demonstrated strong downstream performance across vision
and multimodal tasks while maintaining FL’s privacy and scalability benefits.

Despite these advantages, the security implications of prompt learning in FL remain largely un-
explored. In particular, it is unclear whether prompt learners, given their limited parameter space
and semantic alignment with frozen backbones, are susceptible to adversarial manipulation, such
as backdoor attacks. This presents a critical and underexplored vulnerability in the growing area of
federated foundation model adaptation.

2.3 Backdoor Attacks

Backdoor attacks [8l 15,7} 125,134,153, 162} 163] are a class of training-time data poisoning techniques
wherein an adversary injects carefully crafted samples into the training set with the goal of inducing
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Figure 2: An overview of the attack in an FL setting. A malicious client embeds a learnable noise
trigger into images. The context generator helps optimize the prompts according to the image features.

targeted misbehavior at test time [3}130]. These poisoned samples contain an imperceptible or benign-
looking trigger, such as a small patch in the input, and are assigned a target label of the attacker’s
choosing. Once trained on such data, the compromised model behaves normally on clean inputs but
misclassifies any input containing the trigger to the target class. This selective misbehavior makes
backdoor attacks particularly insidious, as they are challenging to detect using standard validation
procedures. Backdoor attacks have been studied across multiple modalities including vision [26]],
language [33]], and multimodal models [35} 6] and have proven effective even in privacy-preserving
settings like FL, where model updates rather than raw data are shared.

W[y

¥

Backdoor Attacks in Federated Learning: Backdoor attacks pose a serious security threat to FL,
allowing adversaries to embed malicious behavior into the global model by manipulating a small
number of clients during training [4} |56} |49]]. These attacks typically preserve high accuracy on
clean inputs while causing targeted misclassification on inputs containing an attacker-defined trigger.
Early approaches rely on fixed triggers [51} 159, [12], while more recent methods optimize trigger
patterns to maximize attack success and stealthiness [41} 66]]. For example, A3FL [[66]] predicts the
movement of the global model updates and improves attack durability by ensuring the backdoor
persists across global aggregation rounds. Similarly, IBA [41]] jointly optimizes a visually stealthy
trigger and selectively poisons models’ parameters that are less likely to be updated by the main
task’s learning process, achieving a durable and stealthy backdoor effect.

3 Backdoor Attacks on Prompt Learning in FL.

3.1 Overview

While backdoor attacks have been extensively studied in traditional unimodal FL settings, their
feasibility in multimodal federated prompt learning remains underexplored. Unlike traditional full-
model FL, it exposes a narrower attack surface, limited to lightweight prompt vectors, raising new
questions about the strength, persistence, and stealth of such attacks. These differences motivate our
central hypothesis.

Hypothesis. We hypothesize that backdoor attacks capable of degrading centralized prompt learning
can similarly succeed in federated prompt learning. Despite the distributed setup and aggregation
dynamics, prompt-based FL remains vulnerable to targeted manipulation, allowing adversaries to
induce misclassifications on trigger inputs while preserving overall model utility on clean data.

Theoretical Motivation. In CLIP-based prompt learning [70, 69], classification is based on the
cosine similarity between an image embedding f(«) and a prompt-conditioned text embedding
g({V, ¢;}) for class i. To induce targeted misclassification toward a specific class ¢, it suffices to
craft an input * such that:

sim(f(z*), g({V', e;})) > sim(f(2"),9({V, ¢y })), Vy#t 4)

This condition ensures that the model classifies * as belonging to the target class t. In practice,
our attack injects a visually imperceptible trigger, as shown in Figure[I] into local training data and
optimizes it to shift image embeddings toward g({V', ¢;}), effectively planting a backdoor in the
global prompt learner. While this idea is inspired by prior work on backdoor optimization [6} 166} 41],
adapting it to the prompt-only FL setting introduces new challenges: the global model is now updated
solely via lightweight prompt vectors, and the image encoder remains frozen. This means the backdoor
signal must propagate indirectly through prompt aggregation, requiring the trigger to consistently
bias prompt updates without direct influence over model weights, making the optimization problem
both weaker in signal and more sensitive to noise. The attack is visually explained in Figure[T]



Evaluation Metrics. We report two metrics: Clean Accuracy (CA) and Backdoor Accuracy (BA).
Let Dejean = { (4, yi)} denote the clean test set and Dypq = {(z}, y+)} the backdoored test set, where
x; = x; @t is the triggered input for target label y,. Clean Accuracy, the percentage of clean inputs
predicted correctly, is defined as CA = m S W[§(x;) = y;], while Backdoor Accuracy, the

percentage of backdoored inputs predicted as the target label, is BA = ﬁ STH[G(xF) = yi)-

3.2 Threat Model

Objective. The adversary’s goal is to perform a targeted backdoor attack in a federated prompt
learning setup. By injecting a learnable, visually imperceptible trigger into a subset of training inputs
at compromised clients and relabeling them to a fixed target class, the attacker aims to corrupt the
global prompt learner. At inference time, inputs stamped with the trigger are misclassified as the
attacker’s chosen class, while clean inputs remain unaffected, thus maintaining high clean accuracy.

Capabilities. We assume a standard FL setup with IV clients and a central server aggregating client
prompt updates. The adversary controls a fraction m /N of clients, set to 25% by default, consistent
with prior works [15} [16]]. The attacker can:

* Modify a subset of local training data by adding a learnable backdoor trigger to inputs.

* Relabel triggered samples to the desired target class, known in literature as dirty-label attack [S0,
27191147, 165142, 34].

* Optimize the trigger jointly with the prompt learner at each malicious client to maximize its effect
on the global prompt vector.

Knowledge. Since the attacker controls client devices, it naturally has access to the full prompt
learning setup, including model architecture, frozen CLIP backbone, and training procedure. This is
a standard assumption in federated backdoor attack literature [4, 48]], and reflects realistic adversaries
in open-source or distributed deployments where models like CLIP are publicly available [46].

3.3 Design of the Backdoor Attack in an FL Setting

We illustrate the overall system of the backdoor attack in Figure[2] At the beginning of each commu-
nication round, the server distributes (step 1) the current global prompt learner to all participating
clients. Unlike traditional FL systems that transmit full model parameters, prompt-based FL transmits
only the learnable prompt vectors, significantly reducing communication overhead. The clients keep
their model backbones, the image encoder fiy, and the text encoder fi.x, frozen. During local training
(step 2), each client fine-tunes the received prompt vectors on its private data. Malicious clients,
however, inject a learnable additive noise trigger into a subset of their training images and assign
these poisoned samples to an attacker-specified target label, yareer. The objective of malicious clients
is to optimize their prompt learners such that the presence of the trigger at inference time reliably
causes misclassification, without noticeably affecting clean accuracy. After completing local updates,
clients send their locally adapted prompt vectors back to the server (step 3). The server aggregates
(step 4) these updates to form the new global prompt learner, which is then redistributed to all clients.
This process repeats over multiple rounds until convergence.

Attack Formalization: Let (z,y) be a clean image and label pair, with z € X and y € ). Let
fimg : & — R? be the image encoder and fiex @ YV — R? be the text encoder from a frozen CLIP
model. Prediction is defined as:

g = arg Icr.leaff COS(fjmg(.T), ftext(c)) 5)
The attacker injects a learnable trigger ¢ € X" such that * = x & ¢ is indistinguishable from z in
pixel space, but shifts its embedding in CLIP space.

Goal:
COS(fimg(x*)a ftext(ytargel)) > COS(fimg(x*)> flexl(y)) 6)

This causes the model to predict yge; instead of the true label y. The trigger ¢ is learned via gradient
descent to consistently shift embeddings toward fiex(Ytrget) across poisoned samples.



3.4 Attack Impact Table 1: Backdoor attack effectiveness without (no
attack) and with (clean & backdoor) attack.

We now assess the effectiveness of the back-

door attack in a standard federated prompt- Dataset  No-Attack  Clean Backdoor
learning setup, where 25% of clients are ma- Flowers 80.9 77.9 41.7
licious. These clients inject a learnable noise Pets 94.5 94.2 16.3
trigger into a subset of their local data and rela- DTD 65.2 65.6 34.8
bel the triggered samples to a fixed target class. Aircraft 32.3 32.8 93.9
The goal is to induce targeted misclassifications Food101 90.7 90.0 20.6

on trigger-inserted test samples, while preserving high performance on clean data.

Backdoor Effectiveness: Table [I]and Figure [3] show the results of the attack across five datasets.
Refer to Appendix D] for setup details. We observe that the global model maintains high clean
accuracy on all datasets, indicating that benign generalization is largely preserved. At the same time,
the backdoor accuracy which is defined as the fraction of trigger-inserted test samples classified as the
attacker’s target label is significantly elevated, particularly for datasets like FGVC Aircraft (93.9%)
and Flowers (41.7%). These results confirm that Federated Prompt Learning systems are vulnerable
to backdoor injection even under strong aggregation, and that malicious clients can effectively implant
targeted behaviors without degrading global model performance on clean data.

Comparison with Centralized Backdoor Attacks: We 10
compare our FL backdoor attack against its centralized Wl T
counterpart, BadCLIP [6], which serves as the baseline —_—
for prompt-learning backdoor attacks in non-federated set- £ sof o ——"""" "
tings. BadCLIP achieves near 100% backdoor success by

—— ,/‘\Y/.
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directly poisoning a large portion of the training data and R —t —
optimizing the trigger in a fully centralized regime. In 2| 7= [ = oo

contrast, our setting uses the standard FedAvg aggregation L

algorithm and models a more realistic adversary: only a PPt gt o

small subset of clients are malicious, and poisoning is con-
fined to local updates. This naturally dilutes the backdoor

signal during aggregation and results in lower backdoor e TR
accuracy compared to the centralized case. Despite this, . ® P f
our attack achieves high success rates on several datasets, /
demonstrating that prompt-based FL remains vulnerable
even with limited adversarial participation. In we
report results under the no-defense scenario to highlight
how much damage can occur with the default FedAvg e
setup. We analyze the effectiveness of standard defenses ! e’ 80w
in mitigating this attack later in §5.2]

(a) Clean Accuracy
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Figure 3: Accuracy during attack.

4 SABRE-FL: Selective and Accurate Backdoor Rejection for Federated
Prompt Learning

Having demonstrated the vulnerability of federated prompt learning to targeted backdoor attacks, we
now propose Selective and Accurate Backdoor REjection for Federated Prompt Learning (SABRE-
FL), a lightweight defense that detects and filters poisoned client updates at the server.

Our key insight is that backdoored inputs induce systematic shifts in the learned representations,
as visualized later in §5.3] Even when the trigger is visually imperceptible, it alters the image
embedding in a consistent direction enough to cause the downstream model to misclassify the input.
This deviation acts as a double-edged sword: it is the very signal that enables the attack, but also the
very signal we exploit to build our defense. A similar observation was made in BadCLIP [6], which
showed that the success of prompt-based backdoors arises from consistent embedding-level drift
toward the target class. We ask a question: If this embedding deviation is strong enough to fool the
downstream classification model, can it not also be used to detect that the input has been poisoned?

Core idea. Rather than detecting poisoning in pixel or parameter space, we operate in the embedding
space where poisoned examples exhibit a consistent statistical signature. By training a binary classifier
on clean and triggered embeddings in an auxiliary setting, we learn to detect this signature.



4.1 Formalization

Let fimg(-) denote the CLIP image encoder. Given a clean input z, let z = fing(2), and for its
backdoored version z* = x @ t, let 2* = fing(2*). Our defense relies on the assumption that
backdoored embeddings exhibit a separation margin from the embeddings of the clean ones:

|z — 2%l > € forsomee >0 (7

We simulate this behavior by generating a training dataset Dy = {(2i, %) })~, of clean and poisoned
embeddings on an auxiliary dataset (Caltech-101). Here, y; € {0, 1} indicates whether z; is clean or
poisoned. We train a detector D : R? — {0, 1} by minimizing a standard binary loss:

N
mein;E(D(zi;H),yi) (3)

Inference Rule. At inference time, when a client C}, submits a set of embeddings {z;C ’Jil, we
compute the mean detector score:

IR IR
Si= - ;D(zj) ©)

Rather than using a fixed threshold 7, we adopt a rank-based heuristic: in each round, the m clients
with the highest number of flagged embeddings are excluded from aggregation. This approach
assumes an upper bound on the number of malicious clients, consistent with prior work [64} 49, 22}
151 167]. More details on client filtering are in Appendix [C]

Lemma. If a consistent margin € exists and D achieves zero or near-zero training error on D,,y, then
D is expected to generalize well to unseen clients using a noise trigger. This reflects the distributional
stability of backdoored embeddings under the frozen encoder.

4.2 Detector Training and Deployment Algorithm 1 SABRE-FL

T ionalize the f lizati £ d 1: Pre-train Detector:
o operationalize the tormalization of our de- Generate Duy = { (21, y:)} from clean/poisoned

fense, we construct an auxiliary training dataset data

Dax = {(2i, yi)}f\’:1 composed of CLIP im- Train D : RY — {0, 1} using cross-entropy
age embeddings and binary labels indicating  2: for each FL round t = 1 to T' do
whether the embedding originates from a clean 3 Server sends prompt p;_1 to all clients
or poisoned input. To simulate this, we use 4: for each client Cy, do

Caltech-101 as a held-out auxiliary dataset and - if malicious then

apply our trigger injection method (Algorithm [T} g Poison subset: 2™ = z & ¢

line 6), to a subset of images to produce poi- ' data Relabel ™ — ¢, train pi on poisoned

soned samples. Both clean and triggered images .
. 8: else
are passed through the frozen image epcode?r 9. Train ps on clean data
fimg(+) and a fixed prompt learner to obtain their . end if
embeddings. These embeddings are then labeled 11: Send py, embeddings {2¥} to server
as clean (y; = 0) or poisoned (y; = 1) to con- 12: end for
struct the training set. We defer the rest of the 13: for each C, do
training details to Appendix [D.4] 14: Compute S, = ;- 3= D(zF)
15: Remove top-m clients with highest S,
16: end for

4.3 Privacy Considerations
17: Aggregate accepted {pr} — p:

SABRE-FL operates solely in the embedding 18: end for

space and does not require access to raw data, labels, or gradients. Clients share only CLIP-encoded
image representations with the server which are compressed, task-agnostic vectors produced by a
frozen backbone. This strategy is consistent with prior FL paradigms such as vertical FL [36} 24} 9]]
and split learning [5552]], where intermediate features are shared across parties. Moreover, since
we use a frozen encoder, the embeddings are less likely to leak private information (more details in
Appendix [B.4). Unlike gradients or label-conditioned outputs, CLIP embeddings are not trained to
retain input-specific details or reconstruct original data. We acknowledge that data extraction attacks
are an evolving research concern [18| [10]; however, our approach avoids sharing raw data, labels, or
gradients, components that are more strongly correlated with reconstruction leakage.




Table 2: Clean and backdoor accuracy on five datasets. Best backdoor accuracy(lowest) is bold.

Il Flowers Il Pets Il DTD || FGVC Aircraft || Food101
Defense

|| Clean BD || Clean BD || Clean BD || Clean BD || Clean BD
No Defense || 779 417 || 942 163 || 656 348 || 328 939 || 900 206
Trimmed Mean 76.8 12.3 93.7 5.6 63.7 31.0 324 83.1 90.0 6.4
Median 77.4 10.4 94.1 5.3 65.9 28.1 32.1 79.4 90.1 5.5
Norm Bounding 79.0 22.0 92.6 22.5 67.6 37.5 30.9 86.2 89.7 17.2
FLAME 76.4 3.8 93.4 7.8 66.0 8.7 31.5 16.4 89.9 3.2

SABRE-FL (Ours) 76.6 11 94.5 44 64.9 6.8 32.1 7.6 90.6 1.9

S Experiments and Results

5.1 Experimental Settings

We conduct experiments using the CLIP ViT-B/16 model, following the setup of BadCLIP [6]. We
evaluate with five datasets, Flowers, Pets, DTD, FGVC Aircraft, and Food101, and use Caltech-101
as an out-of-distribution dataset to train our detector. The baseline aggregation method is FedAvg,
and we compare against four popular FL defenses: trimmed mean [64} [60], median [64], norm
bounding [51]], and FLAME [40]]. Full implementation details, model configurations, and baseline
defense details are in Appendix [D]

5.2 Results

Effectiveness of SABRE-FL. We compare our proposed defense, SABRE-FL, to four widely-
used robust aggregation techniques: Trimmed Mean [164) 160], Coordinate-wise Median [64], Norm
Bounding [51|], and FLAME [40]. Results across five datasets are shown in Table 2] Our defense
achieves the best backdoor mitigation across all datasets, consistently outperforming all baselines.
Notably, SABRE-FL reduces backdoor accuracy to near zero (as low as 1.1% on Flowers and 1.9%
on Food101) without degrading clean accuracy. In fact, clean performance remains comparable or
superior to baseline methods, highlighting that aggressive filtering of poisoned clients does not impair
generalization. While existing methods do reduce the backdoor accuracy relative to the no-defense
baseline, they often leave a significant portion of poisoned influence intact, especially on challenging
datasets like FGVC Aircraft and DTD. For example, FLAME achieves 16.4% BA on FGVC Aircraft,
and Norm Bounding exceeds 30% BA on multiple datasets.

Robustness and Generalization. SABRE-FL operates without access to client data distributions or
downstream task labels. The detector is trained once on Caltech-101 and generalizes across diverse
datasets in our evaluation (e.g., Flowers, DTD, FGVC Aircraft, Food101, Pets). This generalization
holds across input domains such as fine-grained object categories (Flowers, Aircraft) and texture-
based recognition tasks (DTD), as well as across classification objectives ranging from animal species
(Pets) to food recognition (Food101). Because the embedding deviation arises from the backdoor
mechanism itself, not the specific data distribution, SABRE-FL reliably detects poisoning via a
consistent statistical signature in the embedding space. This highlights its robustness across both
domains and tasks, making it broadly applicable in real-world federated deployments.

5.3 Qualitative Analysis — =

4o+ Backdsored 2 .
To demonstrate why our detection mechanism works, we visualize .' L. ;,( "
the embeddings of clean images and their poisoned counterparts. - -'3'.;', f.‘:'*." -
The idea behind this experiment is noise is imperceptible in the ‘|« wris <2 oqn
visual space to the human naked eye, but is it imperceptible in the ™ *‘5‘%2: N ool
embedding space to the model? This is answered by visualizing - e
the embeddings in a low-dimensional space using a technique like -0l o |

T-SNE [54]. In we show the T-SNE plots for Caltech-

101. We show a similar plot in Appendix [E-I]for Oxford Flowers. Figure 4: t-SNE visualization
We first train a model with backdoors using the technique similar ~on Caltech embeddings. Clean
to BadClip [6], then we pass clean and noisy images through the and backdoored samples are
image encoder and store the output embeddings. When we plot these ~ clearly separable in the CLIP
embeddings using T-SNE, we can see that there is a clear divide embedding space.

between the features of the clean images and the backdoored images.



This validates our intuition behind designing our defense, which lies in the simple fact that if the
noise can be used to fool the model into predicting a wrong class, that same noise can also be used to
detect if an embedding comes from a clean image or a poisoned one.

5.4 Ablation Study

Clean (No Defense) Backdoor (No Defense)
Emm Clean (SABRE-FL) EEm Backdoor (SABRE-FL)

Impact of Prompt Shot Count:

The number of shots in prompt learning dictates
how many samples per class will be fed to the
prompt learner. We study the effect of prompt
tuning strength on both attack success and de- ”
fense robustness. To evaluate this, we conduct

an ablation across 2, 4, 8, and 16 shots. For 2-shot 4-shot 8shot 16-shot
each shot count, we measure both clean accu- Figure 5: Varying number of shots for DTD
racy and backdoor accuracy, with and without

our defense, across five benchmark datasets. The plots for the DTD dataset are shown in Figure 3]
Due to space constraints, we show plots on other datasets in Appendix [E.2}

Accuracy (%)

Without any defense, backdoor accuracy increases significantly as the number of shots grows, most
notably in datasets like FGVC Aircraft and Food101, where attack success reaches over 85% at 16
shots. This trend suggests that prompt learners become increasingly susceptible to backdoor attacks
as they receive more supervision, likely due to stronger memorization of poisoned training samples
(more details in Appendix [B2)). At the same time, clean accuracy also improves, reflecting the
natural benefits of more labeled data. With our defense SABRE-FL enabled, however, backdoor
accuracy remains consistently low (under 5%) across all shot counts and datasets. This indicates that
our embedding-based detector remains effective even as prompt learners become more expressive.
Crucially, clean accuracy under our defense matches or exceeds the no-defense baseline, confirming
that the defense does not suppress benign updates. Overall, this experiment highlights that our
method provides strong backdoor mitigation without compromising clean performance, even as
model capacity increases with additional prompt shots.

Effect of Malicious Client Proportion: We analyze the
impact of varying the proportion of malicious clients on
both clean accuracy and backdoor success. As shown
in[Figure 6] backdoor accuracy rises sharply as the attacker
fraction increases. At an attacker rate of 25%, the attack
achieves 93.9% success on FGVC Aircraft and 41.7% on
Flowers. Once the malicious client proportion reaches
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50% or more, backdoor accuracy exceeds 80% on most 40 —e= Fooar01
datasets and approaches 100% at the highest setting. These 30
results highlight the sensitivity of prompt-based FL to even ° % alicous dlents (%) 10

adversarial participation, especially in few-shot regimes
where each client contributes limited data. Notably, clean () Clean accuracy vs. malicious clients.
accuracy remains largely unaffected across all configura- 100
tions, indicating that the poisoned updates are stealthy and
do not visibly degrade global model performance.
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In this paper, we show that backdoor attacks are a po- 2

tent threat to federated prompt learning. We explain why 0
such attacks are successful, and use that to design a robust 0 %2 alicious Clients (%) 100
defense, SABRE-FL, against such noise-trigger-based at-

tacks. Our defense is based on the core intuition that the (b) Backdoor accuracy vs. malicious clients.
backdoor noise trigger propagates to the embeddings as

well. SABRE-FL is a detector model that is able to fil- Figure 6: Effect of increasing malicious
ter clean and noisy embeddings. Evaluation across five client percentage on model performance.
datasets and four baseline defenses shows that our defense  Clean accuracy remains stable, while
outperforms all baselines. backdoor success increases sharply with

more adversarial control.
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Appendix

We provide additional information for our paper, SABRE-FL: Selective and Accurate Backdoor
Rejection for Federated Prompt Learning, in the following order:

* Limitations and Future Work (Appendix [A]

* Terminology/Techniques (Appendix [B)

* Additional Implementation Details (Appendix [C)
* Experimental Setup (Appendix D))

* Additional Results (Appendix [E})

A Limitations and Future Work

This work brings together three major research areas: federated learning, prompt learning, and
backdoor attacks under a unified evaluation framework. Given the breadth of this integration, it
is naturally beyond the scope of a single paper to exhaustively explore all possible combinations
of settings, attack strategies, and defense variants within this space. Our goal in this paper was to
highlight a critical and previously unexamined vulnerability: the susceptibility of federated prompt
learning to targeted backdoor attacks. To that end, we carefully selected evaluation settings that
isolate this problem and clearly demonstrate both the threat and the effectiveness of SABRE-FL.

Nevertheless, several limitations remain. First, while we focused on data poisoning attacks with
learnable triggers, we did not explore model poisoning attacks [22}49], where the attacker perturbs
client model parameters directly. Future work could compare the relative potency and stealth of
model vs. data poisoning in prompt-based FL. Second, although we used five diverse datasets and
conducted shot-based and scale-based ablations, we did not explicitly vary data heterogeneity across
clients. Understanding how non-IID data affects backdoor robustness and detection performance is
an important direction. Finally, we used the CLIP ViT-B/16 backbone throughout this study; while
it is a representative and widely adopted model, future work may examine other vision-language
backbones (e.g., ViT-L, EVA-CLIP, or OpenCLIP variants) to assess generalization across model
families. Overall, we believe our findings lay the foundation for a deeper understanding of security
risks in prompt-based federated systems and invite further exploration into more nuanced threat
models, client behavior assumptions, and multi-modal defense strategies.

B Terminology/Technologies

B.1 CLIP: Contrastive Language-Image Pretraining

CLIP, short for Contrastive Language-Image Pretraining, is a type of multimodal machine learning
model developed by OpenAl [46]. “Multimodal” means it can process and relate information from
two different types of inputs, in this case, images and natural language. Models like CLIP are
referred to as vision-language models (VLMs) because they jointly understand both visual and textual
information. CLIP was trained on a large dataset of 400 million (image, text) pairs collected from the
internet. The idea behind CLIP is simple but powerful: given an image and a sentence, the model
learns to tell whether the sentence correctly describes the image. For example, given a photo of a cat
and several captions like “a cat,” “a dog,” or “a painting,” CLIP learns to match the correct caption to
the image. This is done using a technique called contrastive learning, where the model pulls together
matching image-text pairs and pushes apart mismatched ones in the embedding space.

CLIP has two components: - An image encoder (e.g., a Vision Transformer or ResNet) that converts
images into high-dimensional vectors. - A text encoder (e.g., a Transformer) that converts sentences
into vectors in the same space. After training, CLIP can be used for zero-shot classification, where it
is given a list of possible text labels and an image, and it predicts which label best matches the image.
This makes CLIP very versatile for downstream tasks, i.e., tasks that are different from the model’s
pretraining objective, such as object classification, image retrieval, OCR, or even robotics. During
testing, CLIP matches a given test image with the best matching class label (converted into a prompt
like "a photo of a class"). In summary, CLIP is a general-purpose vision-language model that learns
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a shared representation space for images and text without needing explicit labels. It serves as the
foundation for prompt learning, which allows users to adapt CLIP to new tasks more effectively.

B.2 Prompt Learning

A prompt is a piece of text that is used to guide a model’s predictions. In language models (like GPT),
a prompt might be a sentence like “Translate this to French: Hello,” and in CLIP, it might be “a photo
of a dog.” In the original CLIP setup, hand-crafted prompts like “a photo of a class” are used during
testing to convert text labels into embeddings. However, manual prompts are often suboptimal as
they rely on human intuition and may not generalize well across tasks or datasets. This led to the idea
of prompt learning, where instead of using fixed textual prompts, we learn soft prompts, i.e., a set
of trainable vectors that replace or augment the context in a prompt. These prompts are optimized
during training to improve model performance on a given downstream task.

The pioneering work in this area is CoOp (Context Optimization) [70], which introduced learnable
prompts for vision-language models like CLIP. In CoOp, the prompt is represented as a series of
learnable embeddings [v1, va, ..., vx], which are prepended to each class name (e.g., “[v1] [v2] ...
[vN] dog”) and passed through the text encoder. These prompts are optimized using a small amount
of labeled data. Prompt learning has several advantages: (1)It avoids fine-tuning the entire backbone,
making it computationally efficient. (2) It adapts the model to new tasks with only a few training
examples (few-shot learning). (3) It retains the generalization power of the pretrained model while
specializing it for a specific task. Some common prompt hyperparameters include: (1)Context length
(N): the number of learnable prompt vectors prepended to the class name. (2)Number of shots: how
many labeled examples per class are used for training. (3)Class token position: whether the class
label appears at the start, middle, or end of the prompt. Increasing the number of shots typically
improves accuracy because the model sees more training examples per class, allowing the prompt
learner to better capture the features that distinguish different categories. However, prompt learning
often performs well even in low-shot settings, making it ideal for domains with limited labeled data.

B.3 BadCLIP

BadCLIP is a backdoor attack framework proposed in a CVPR 2024 paper [6], designed to evaluate
the vulnerability of prompt-learning-based vision-language models like CLIP. Unlike traditional
backdoor attacks that rely on visible patterns or simple data poisoning, BadCLIP crafts visually
imperceptible noise triggers that manipulate the internal behavior of the model during both training
and inference. Similar to CLIP, BadCLIP predicts the correct label by comparing image features
to text features derived from prompts (e.g., “a photo of a dog”). In the presence of a backdoor, a
small adversarial noise pattern (trigger) is added to the input image. This trigger is optimized during
training to cause the image encoder to shift the image embedding closer to the text embedding of
an attacker-specified target class (e.g., “cat”), while remaining visually indistinguishable to humans.
BadCLIP also adapts the prompt vectors in a trigger-aware manner. That is, both image features and
context vectors are conditioned on the presence of the backdoor trigger, making the backdoor more
robust and more likely to survive training. During inference, even if a clean image is given a trigger,
the poisoned model misclassifies it as the target class due to embedding-level drift.

More formally, given a clean image x and a trigger ¢, the backdoored input * = x & ¢ results in an
image embedding f(a*) that is closer to the prompt-conditioned text embedding of the target class
g({V, ¢, }) than to its true label g({V', ¢, }). The model predicts the target class ¢ even though the
visual appearance corresponds to y. BadCLIP is the first backdoor framework using noise-based
triggers specifically designed for prompt-tuned CLIP models. Its key insight is that backdoor signals
are not limited to the input space but can be embedded into CLIP’s latent space, making them both
stealthy and effective. SABRE-FL builds on this idea, extending it to the federated learning setting.

B.4 Privacy Leakage

Recent work has demonstrated that it is possible to reconstruct input data from machine learning
models [[10} 18, [17]. These attacks are known as reconstruction attacks. However, such attacks
typically require certain strong assumptions. For example, [10] consider a very strong adversary that
knows several data points as well as the weights of the model.
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SABRE-FL operates entirely in the representation space of a frozen CLIP encoder, meaning the
image encoder is never updated with client-specific data. As a result, the embeddings remain generic
and task-agnostic, optimized for cross-modal alignment, not input reconstruction. This design choice
significantly reduces the risk of privacy leakage, as CLIP embeddings are not trained to retain
high-frequency or instance-specific image details.

While representation-level inversion remains an evolving area of research, current attacks often as-
sume more favorable conditions than those present in SABRE-FL. Nevertheless, we acknowledge the
broader risk and consider our design to reflect a privacy-utility tradeoff: by accepting lightweight rep-
resentation sharing with a fixed encoder, we achieve robust backdoor detection without compromising
raw inputs or task-specific outputs.

C Additional Implementation Details

C.1 Detector Thresholding and Client Filtering

In the main paper, we define the detector score S, for each client C'y as the mean classification output
over its submitted embeddings:

1 &
S, = — D(z*
k nka:; (Z])

where D(-) is a binary classifier that outputs 1 for poisoned embeddings. While this naturally allows
for threshold-based filtering (i.e., flagging clients for which Sy > 7), in practice we adopt a more
stable rank-based heuristic.

Specifically, in each communication round, we assume m out of n clients may be malicious, and we
remove the m clients with the highest number of flagged embeddings (or highest Sj, scores). This
avoids the need to hand-tune a static threshold 7 and reflects a standard assumption in robust FL
defense literature, where m is typically known or bounded [64} |60]]. This rank-based heuristic is
consistent with our earlier detector formulation and preserves the intended semantic interpretation of
S}, as a client-level anomaly score.

D Experimental Setup

D.1 Model and Attack Settings

We use the CLIP model in a similar style as that of Bai et. al [6]. ViT-B/16 is used as the image
encoder. The pretrained weights are taken from CLIP’s released models [46]. We use a context length
N of 4, total number of epochs as 10, where 1 is a warmup epoch, and a cosine learning rate scheduler
with an initial learning rate of 0.002. Unless specified otherwise, we keep the number of shots to be
8, trigger optimization for 3 epochs, and an SGD optimizer. The maximum noise strength, e, for the
backdoor trigger is chosen to be 4. Similar to BadClip, the first class of every dataset is chosen as the
target class during the attack.

D.2 Datasets

We use datasets that are used in CoOp [[70]] and BadCLIP [6]. We use the same dataset configuration
files they provide. The datasets we use in our experiments are:

* Caltech-101 [23] is a standard object classification dataset consisting of 9,146 images across 101
object categories and a background class. It has the license CC BY 4.0. Each category contains
between 40 and 800 images of objects taken from varying viewpoints and backgrounds. The
dataset is known for its moderate intra-class variation and has been widely used in evaluating vision
models, especially in low-shot and few-shot learning settings. In our work, we use Caltech-101 as
an out-of-distribution (OOD) dataset to train our backdoor detector. Importantly, this dataset is
disjoint from the ones used in federated training, allowing us to test whether our detector generalizes
across domains.

* Flowers-102 [43] is a fine-grained classification dataset consisting of 8,189 images of flowers
categorized into 102 species. Each class contains between 40 and 258 samples. The high inter-class
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similarity and fine-grained nature of the dataset make it a challenging benchmark for vision-
language models.

* The Oxford-IIIT Pets dataset [44] contains 7,349 images of 37 breeds of cats and dogs. Each class
includes approximately 200 images captured in varied poses, lighting conditions, and backgrounds.
The dataset presents a mix of inter-class similarity and intra-class diversity, making it suitable for
testing the robustness of prompt learners in federated setups. It is available under the license CC
BY-SA 4.0.

* DTD [20] (Describable Textures Dataset) is a texture-centric classification dataset with 5,640
images labeled across 47 human-describable texture attributes such as “bumpy,” “scaly,” or “striped.”
The dataset emphasizes mid-level visual cues and is used in our evaluation to test whether prompt-
based FL models can maintain robustness when the notion of class is not strictly object-centric.

* FGVC Aircraft [37] contains 10,000 images of 100 aircraft variants grouped by manufacturer
and model. It is a fine-grained classification dataset that introduces significant challenges due to
subtle inter-class differences and high intra-class consistency. We include it to assess whether
backdoor attacks are effective even in domains where prompt learners must capture nuanced visual
differences.

* Food-101 [13] consists of 101,000 images across 101 food categories. The dataset exhibits
significant visual diversity, both within and across classes, and is commonly used to benchmark
image classification performance under real-world visual noise and clutter. It serves as one of the
more large-scale and diverse benchmarks in our federated evaluation.

D.3 Defense Methods

We compare our technique with four popular defense techniques. Trimmed mean [[64 60| is a widely
used defense in FL, where the server receives updates from each client, sorts them across each
dimension, and then discards the m smallest and lowest values across each dimension. Here, m is the
number of malicious clients. Median [64] is another popular defense mechanism, where the global
model is computed by taking the dimension-wise median of the client updates. Norm-bounding [51]]
clips the values of client updates to a certain value so they do not exceed that threshold. This threshold
is computed by taking the median value of the client updates. FLAME [40] is a more complex defense
that first clusters the clients into benign and malicious groups using hdbscan [[14], clips them at a
certain threshold, and adds noise to the model parameters to make them resilient to backdoors.

D.4 Detector Training

We train a detector D : R? — {0, 1} to minimize binary cross-entropy loss over this embedding
dataset. The model architecture is a two-layer multilayer perceptron (MLP) with a hidden layer of
size 128 and ReLU activation. It takes as input CLIP image embeddings z; € R? (with d = 512) and
outputs logits corresponding to the clean or backdoored class. Optimization is performed using the
Adam optimizer with a learning rate of 1 x 103 for 20 epochs, and batch size 64.

To evaluate cross-domain generalization, we test the trained detector on separate held-out datasets,
namely Oxford Flowers, Pets, DTD, FGVC Aircraft, and Food101, each containing a mix of clean and
poisoned embeddings. Despite being trained on a single auxiliary dataset, the detector consistently
achieves > 90% accuracy on these unseen domains. This supports our hypothesis that poisoned
embeddings exhibit a consistent statistical signature in CLIP space, independent of the underlying
dataset or class distribution.

D.5 Resources

We used PyTorch [45] for our coding on a Linux-based system. For running experiments, we use
our university cluster that has different types of GPUs. Most of our experiments were performed on
12 GB NVIDIA TITANX GPUs. The run time of the experiments depended upon the dataset used,
number of shots, and number of clients.
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E Additional Results

E.1 t-SNE

We show the t-SNE plot of Oxford Flowers clean and backdoored embeddings in Figure([7}
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Figure 7: t-SNE Flowers

E.2 Varying number of shots

We show the impact of varying the number of shots on all five datasets in Figure [§]

E.3 Robustness to Client Scaling

To evaluate the robustness of SABRE-FL under increased scale, we replicate our backdoor attack and
defense experiments with 32 clients. As shown in Table [3] backdoor success rates rise substantially in
the absence of defense, reaching 89.9% on FGVC Aircraft and 46.8% on DTD. When SABRE-FL is
enabled, backdoor accuracy drops to 24.7% and 14.1%, respectively, demonstrating that our detector
remains effective even as the number of participating clients grows. Clean accuracy also remains
stable across all datasets, confirming that the defense generalizes to larger federated populations
without degrading utility.

Table 3: Backdoor attack effectiveness with and without SABRE-FL at 32-client scale. Each cell
shows Clean Accuracy / Backdoor Accuracy (%).

Dataset Flowers Pets DTD FGVC Aircraft Food101
No Defense ~ 74.9/43.5  88.8/259  59.3/46.8 29.9/89.9 89.2/322
SABRE-FL 75.0/8.5 91.1/7.2 61.0/14.1 29.7/24.7 89.7/2.8
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Figure 8: Our defense consistently reduces backdoor success without degrading clean performance,
even as the number of shots increases.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we have ensured that the main claims in the abstract and introduction
accurately reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we have discussed the limitations and future work in
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Yes, in our paper, all theoretical proofs and equations are numbered, cross-
referenced, and their assumptions are clearly stated.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we have fully disclosed the information needed to reproduce the main
experimental results of the paper. They are written in Section[5]and Appendix [D}

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we are submitting the code for SABRE-FL in the supplementary material.
All datasets are publicly available. We provide an “instructions.txt" file to reproduce results
on backdoor attacks and train the detector model. We have modified the code inside the
BadCLIP [6] repository, making it easier to run experiments. We will publish our full code
with the final version of this paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify the training and test details in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We did not have enough compute resources to completely re-run all the
experiments for different seeds and report error bars for different runs. We are currently
rerunning the error bar experiments, and we plan to include the experiments with different
seeds in the final version.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We present these details in Appendix D]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Yes, to the best of our knowledge, our paper conforms to the NeurIPS Code of
Ethics in every aspect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Or work does not have such a societal impact that requires discussion in the
paper.
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* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: To the best of our knowledge, our paper poses no such risks. We use publicly
available code and data for our work.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the datasets and they have been widely used in previous
works. The datasets we used are Caltech-101 [23]], Flowers-102 [43]], Oxford-IIIT Pets [44],
DTD [20], FGVC Aircraft [37]], and Food 101 [[13]]. We found the license for Caltech-101
(CC BY 4.0) and Oxford Pets (CC BY-SA 4.0). We could not find a license for others, but
their homepages say that they are available for non-commercial research purposes.

Guidelines:

* The answer NA means that the paper does not use existing assets.

24



13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we are submitting the code for SABRE-FL in the supplementary material.
We provide an “instructions.txt" file to reproduce our results.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve any crowdsourcing experiments nor research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The use of LLMs is not an important, original, or non-standard component of
the core methods in this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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