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Abstract

Understanding how teams coordinate, share work, and negotiate
roles in immersive environments is critical for designing effective
mixed-reality (MR) applications that support real-time collabora-
tion. However, existing methods either rely on external cameras
and offline annotation or focus narrowly on single modalities, lim-
iting their validity and applicability. To address this, we present a
novel group interaction sensing toolkit (GIST), a deployable sys-
tem that passively captures multi-modal interaction data, such as
speech, gaze, and spatial proximity from commodity MR headset’s
sensors and automatically derives both overall static interaction
networks and dynamic moment-by-moment behavior patterns. We
evaluate GIST with a human subject study with 48 participants
across 12 four-person groups performing an open-ended image-
sorting task in MR. Our analysis shows strong alignment between
the identified behavior modes and shifts in interaction network
structure, confirming that momentary changes in speech, gaze, and
proximity data are observable through the sensor data.
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1 Introduction

Collaborative Mixed Reality (MR) applications are transforming
fields such as surgical planning and training [17], shared 3D ar-
chitectural walkthroughs [11], remote industrial equipment main-
tenance guidance [18], and co-creative product prototyping [7],
each relying on seamless coordination among multiple users (in
real time). However, despite these rich, group-based scenarios, we
still lack scalable, real-time methods to observe and analyze how
groups interact in immersive technologies such as Virtual Reality
(VR), Augmented Reality (AR), and Mixed Reality (MR)!. Effective
collaboration depends on participants’ communication patterns,
decision-making, turn-taking, social norm setting, and authority
negotiation [16, 28, 33, 34], all of which vary with group size, com-
position and task complexity [20, 21, 25] and ultimately shape
productivity, creativity and performance [46, 48, 58]. While tradi-
tional research has examined group behavior in physical settings,
the emergence of immersive technologies (AR/VR/MR) offers new
frontiers for collaborative work.
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MR, in particular, seamlessly integrates digital objects into the
physical environment, enabling interaction as if they were physi-
cally present. This seamless integration creates collaborative sce-
narios distinct from VR (fully immersive) or AR (digital overlay),
introducing novel social and spatial variables such as spatial aware-
ness [35, 39], presence [27, 61], and multimodal communication [37,
59]. Moreover, inter-, intra-, and multi-user variability [12, 71] de-
mands methods that can capture and interpret these complex, evolv-
ing interactions. Previous research has significantly advanced our
understanding of collaboration through various methods, including
VR/AR studies [8, 45, 70], sociometric badges [29], and external
techniques such as motion capture cameras, intrusive wearable
sensors, or manual video analysis [69]. However, these approaches
cannot be directly applied to the on-device environment of Mixed
Reality (MR) headsets [13]. MR uniquely blends physical and vir-
tual worlds, leading to challenges such as occlusions and spatial
constraints. In this context, the aforementioned methods are unable
to capture crucial in situ cues such as gaze, speech, and motion,
which are essential to understand group behavior [1].

In this paper, we address the need for a deeper understanding of
group behavior in MR by answering the following research ques-
tions (RQ): How can the sensory systems in MR headsets effectively
capture group behavior during collaborative tasks? (RQ1) and What
algorithms can process and interpret the data to infer group behavior?
(RQ2). To answer these, we introduce Group Interaction Sens-
ing Toolkit (GIST), the first end-to-end framework that passively
senses, aggregates, and clusters multimodal signals from commod-
ity MR headsets to infer group behavior. Using embedded headset
sensors, we present GIST and make four main contributions:

(1) Passive Multimodal Sensing Pipeline. We capture and pre-
process raw gaze, binaural audio, and motion data using
embedded sensors in commodity MR headsets, preserving
natural interactions without extra hardware.

(2) Sociogram Aggregation Module. We construct instantaneous
interaction graphs (sociograms) to capture graph-based ag-
gregation of group behavior using domain-informed thresh-
olds to compute structural metrics of group behavior.

(3) Temporal Clustering Module. We implement unsupervised
time-series clustering of dyadic interactions to reveal evolv-
ing behavioral phases, without manual annotation.

(4) Empirical Validation. We deployed GIST prototype in a 48-
participant (12-group) unconstrained image-sorting study.



Our evaluation demonstrates the system’s stability, inter-
pretability, and ability to uncover meaningful group-level
insights through structural and temporal analysis.

2 Related Work
2.1 Group Behavior Sensing in MR/VR

Decades of VR research have revealed how virtual contexts shape so-
cial presence, interpersonal dynamics, and collaboration [3, 15, 24],
with proteus effects and other frameworks [60], explaining the emer-
gence of group norms in digital spaces. MR adds further complexity
by merging real and virtual worlds, introducing novel factors such
as altered spatial awareness [35], shifts in presence [27], multimodal
communication channels [59], and even changing basic behaviors
such as eye contact compared to face-to-face settings [50]. But
most MR studies focus on individual-user tasks, designing overlays
for walking [32], biking [30, 38] or driving [52, 57] rather than
multi-user collaboration. Prior work in immersive environments
has utilized multi-modal sensors to instrument group interactions,
but often for offline or lab-based analysis. TeamSense, for exam-
ple, used badges to log speaking time and proximity for VR team
cohesion [70], gaze and controller motion have characterized turn-
taking in small VR groups [8, 45], and MR prototypes have recorded
head pose and hand gestures under lab cameras for task coordi-
nation [13]. These approaches yield static, offline snapshots and
require extra hardware or manual annotation, leaving a gap in fully
automated, in-situ inference of evolving group behavior using only
the sensors built into MR headsets.

2.2 Social Signal Processing & Sociometric tools

Ubiquitous computing has shown that simple audio, location, and
motion cues can reveal rich social dynamics in co-located groups.
Sociometric Badges tracked speaking patterns, turn-taking, and in-
terpersonal distance to predict team cohesion and performance [29,
47], and ambient microphones or Bluetooth beacons have been
used to detect synchrony and leadership emergence [8]. Social
Network Analysis (SNA) and sociometry then provide systematic
methods via sociograms to visualize and quantify relationships,
roles and subgroup structures based on interaction frequency and
strength [44, 65]. These techniques have been applied across do-
mains, from nursing teams [10] to classroom groups [36] and virtual
environments (VE), where gaze-based networks reveal leaders and
cohesion patterns [2, 67]. While previous systems rely on dedi-
cated hardware or fixed installations, our framework GIST brings
on-device social-signal processing to MR headsets to compute so-
ciometric indicators in without extra instrumentation.

2.3 Mixed Reality Collaboration Frameworks

Several MR platforms log extensive user activity such as gaze
heatmaps, object interactions, and spatial trajectories to support
interface evaluation or task coordination [37, 59]. For instance,
collaborative design tools stream gaze and annotation events for
post-hoc replay [19]. However, these logs remain siloed; they record
low-level events but lack integrated models to translate them into
social metrics such as participation balance or subgroup cohesion.
We fill this gap by using sociometry, generating higher-order rep-
resentations of group behavior in live MR sessions.
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2.4 Beyond Related Work

While prior HCI and ubiquitous-computing studies have demon-
strated how sensor-derived features correlate with self-reported
engagement or presence, they stop short of delivering a turnkey,
on-device analysis framework for MR. In contrast, GIST fills this
gap with a headset-only platform that extracts objective metrics
of group behavior without any external infrastructure. By mov-
ing from offline analytics and dedicated hardware to an integrated
headset-only framework, our work provides the engineering and
MR research communities with the first end-to-end solution for in
situ group behavior interpretation.

3 System Design and Implementation

In this section, we present GIST to design an in situ, real-time
passive group behavior sensing in MR environments. Our system
addresses three key challenges: (1) synchronizing data across mul-
tiple headsets without any external infrastructure by multi-modal
sensor integration (§3.1), (2) extracting rich, meaningful interaction
features from commodity headset sensors using sociogram-based
structural analysis (§3.2), and (3) unifying both structural and tem-
poral views of group behavior into a cohesive analysis pipeline via
temporal clustering for dynamic pattern discovery (§3.3).
Design Motivations and Goals. Analyzing group behavior in
MR demands methods that preserve natural interaction while still
producing timely, reliable insights. However, traditional setups
break immersion and limit real-world deployment. GIST therefore
relies solely on the headset’s built-in sensors to eliminate setup
overhead and preserve interaction authenticity, but to maintain
the consistency across sensing modalities, we perform temporal
synchronization for coordinate behaviors such as joint attention and
turn-taking with sub-100ms precision using network time protocol
(NTP)-based clock alignment [42], essential since gaze convergence
events occur within 50-100ms windows. Through lightweight fea-
ture extraction and concurrent sensor stream processing, we enable
real-time behavioral insights without disrupting the MR experience.
We implement these goals through a modular pipeline as shown
in Figure 1. GIST capture and synchronize sensor input from multi-
ple headsets with global timestamp alignment; clean and calibrate
data to reduce noise; extract dyadic primitives (gaze, speech, prox-
imity); build session-level interaction networks (sociograms) to
capture roles and group cohesion; and segment interactions into
8-32 second windows to identify recurring behavioral patterns. This
dual-scale architecture provides both a holistic overview via net-
work metrics that reveal leadership roles and participation equity,
and a dynamic view through short-window clusters that track at-
tention shifts and conversational transitions, making GIST suitable
for real-world collaborative MR deployments.

3.1 Passive Sensing Module

GIST exploits a full suite of built-in MR headset sensors. In partic-
ular, we are interested in observing information related to three
types of interaction, namely conversation via audio, shared atten-
tion via gaze, and proximity via position data, as they have shown
relevance to unraveling group behavior in various works in the
literature. During each MR session, we collect the following data
for downstream behavioral modeling.
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Figure 1: GIST provides behavioral insights at two complementary temporal scales. At the session level, aggregated interaction
features construct sociograms capturing gaze, speech, and proximity relationships, analyzed using network metrics for group
dynamics assessment. At the temporal level, short-window interaction features are clustered using unsupervised deep learning

to identify recurring behavioral patterns, enabling fine-grained temporal segmentation of collaborative activities.

Audio. Ubiquitous sensor studies confirm that speech activities
have long been shown to be critical for understanding small group
interaction [4, 47, 70], and their patterns shift across platforms from
desktop to VR [67]. We track conversation via headset microphones
and a lightweight voice-activity detector that timestamps each
user’s speech segments to capture the verbal participation.

Gaze. Building on extensive work in joint attention and gaze aware-
ness for collaboration [43, 63, 68], we capture shared attention from
synchronized gaze rays whenever two users’ gaze vectors intersect
the same virtual object or region.

Position. We capture physical proximity from six-degree of free-
dom (6DoF) headset poses (a proxy for social interaction [9, 26])
with spatial coordination recorded whenever participants remain
within a close distance of one another.

Together, these synchronized, timestamped streams of audio,
gaze, and position data form the basis for both session-level network
analysis and fine-grained temporal clustering of dynamic group
behavior. Passive data collection occurs entirely during the MR
session. Processing and analysis are performed offline, allowing for
scalable deployment without affecting the in situ user experience.

3.2 Structural Analysis Module

Sociograms, first popularized in social psychology to visualize
group dynamics [44], are network representations that capture
social relationships and interaction patterns in groups, providing a
concise snapshot of who interacts with whom and how strongly.
See Figure 1 for an example of a sociogram. In GIST, we automat-
ically generate a sociogram, translating the raw sensor streams
into a series of weighted interaction graphs, where each node is a
participant, and each edge’s weight reflects the cumulative inter-
action strength across audio, gaze, and position modalities. This
automated, annotation-free process produces static snapshots of
group structure, revealing emergent leaders, subgroup clusters, and
overall cohesion.

3.2.1 Feature Selection. We focus on interaction channels from
our three main modalities.

First, conversation patterns serve as a window into turn-taking
dynamics and conversational balance. Beyond simply summing
speaking time, we compute measures such as speaking-turn en-
tropy (how evenly the floor is shared) and overlap rate (frequency
of interruptions or back-channels). These metrics map onto con-
structs of dominance and engagement established in small-group
studies [47, 54]. Speech segments shorter than 0.5 s are discarded
to filter out non-substantive utterances, while longer turns are at-
tributed directionally to capture the speaker—listener asymmetry
intrinsic to group dialogue.

Second, shared attention reflects the coordination of visual focus,
which captures and underpins joint problem solving and mutual
awareness. We detect joint fixations by intersecting each user’s 3D
gaze vector with virtual objects and counting only overlaps that
exceed fleeting glances. From these events, we derive edge weights
by total duration and fixation frequency, and mean inter-fixation
interval, allowing us to distinguish sustained collaboration on a
single artifact from rapid visual shifts across multiple items.

Third, physical proximity captures embodied aspects of collabo-
ration that foster informal communication and trust [26, 64]. Using
six-DoF head pose data, we record both the cumulative time dyads
spend within a distance threshold and their approach-and-withdraw
dynamics, quantified as the rate of change in inter-headset dis-
tance. These features differentiate static closeness, such as huddling
around a shared task, from dynamic movement patterns that signal
pacing, turn-taking movement, or opportunistic side conversations.

We omit gesture and facial-expression cues because capturing
them with sufficient fidelity would require external cameras, which
are incompatible with our untethered MR deployment.

3.2.2  Modality-Specific and Fused Sociogram Construction. To cap-
ture the multi-dimensional nature of MR collaboration coherently,
we construct a separate sociogram for each modality rather than
scattering metrics across them. This is to both isolate behaviors that
could otherwise be conflated (for example, participants who remain
physically close yet do not speak) and to keep the analysis opera-
tional when a sensor stream is temporarily unavailable. For each



session, we generate a sociogram per interaction channel (conver-
sation, shared attention, and proximity). We then merge the three
modality-specific sociograms into a fused multimodal sociogram,
providing a comprehensive view of group interactions.

o Temporal scope. We produce sociograms at two temporal scales,
one covering the entire session and another using sliding 32's
windows with a 16 s stride. This 32 s window is enough obser-
vations for stable edge-weight estimates, and the 16 s overlap
captures sub-minute transitions in group dynamics, consistent
with prior conversational windows and aligning with our tempo-
ral clustering module.

o Edge definition. In each window, we assign edge weights based on
the total duration of interaction. For conversation, the sum of spo-
ken time; for shared attention, the overlap of gaze fixations; and
for proximity, the accumulated intervals of co-presence within
the defined distance threshold. Longer, sustained interactions,
therefore, contribute more heavily than brief encounters. To cap-
ture directional dynamics, conversation graphs are treated as
directed, reflecting the asymmetry between speaker and listener
observed in our pilot study. Attention and proximity networks re-
main undirected, since those forms of engagement are inherently
mutual.

e Pre-processing and Thresholds Prior to graph construction, we
apply modality-specific thresholds grounded in our empirical
studies. Between two users, gaze overlaps must last at least 13 ms,
matching the lower bound of visual processing latency [49] to
consider them jointly attentive. Proximity events require headsets
of users to remain within 1.5 ft, corresponding to Hall’s intimate-
distance zone [22]; and conversation edges aggregate only speech
segments of 0.5 s or longer to filter out breaths and back-channels
while preserving monosyllabic utterances [56].

o Fused graph. After building three separate sociograms, we normal-
ize each adjacency matrix and fuse them into a single multimodal
network using PCA-derived weights so that each channel con-
tributes proportionally while retaining the directed nature of
conversational ties (see §3.2.4).

3.2.3  Network Metrics for Behavioral Insights. To translate raw so-
ciograms into interpretable group-level insights, we convert each
network metric into a three-tiered scale, based on either fixed
thresholds or session-relative percentiles, high: top 20% of values (or
z>+1), medium: middle 40%, and low: bottom 40% (or z<—1). For
metrics naturally bounded in [0, 1], we define low < 0.29, medium
0.30—0.59, high > 0.60; adjusting the high to > 0.50 when n < 4).
We apply this classification to the three categories of metrics across
each modality-specific and fused sociogram.

Centrality measures highlight participants who act as leaders or
brokers within conversation and shared-attention networks. Cohe-
sion metrics capture how tightly connected subgroups are, whether
through physical proximity or mutual gaze. Finally, connectivity
in the conversation graph is quantified via reciprocity, indicating
the balance of two-way exchanges. Together, these metrics pro-
vide both a static snapshot of the group structure and a means to
track how roles, subgrouping, and engagement evolve over time.
In Table 1, we summarize how each metric is mapped onto inter-
pretable aspects of group behavior. We compute these measures
on the directed conversation graphs and the undirected attention
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and proximity sociograms, and then we apply them to the fused
multimodal sociogram to capture combined interaction effects.

3.24 Implementation Details. For each sliding window [#o, t1], we
maintain three N X N adjacency matrices w (conv) 7 (att) 7 (prox)
indexed by participant pairs. Upon each update:

In the conversation graph, we initialize wleonv) o at the
start of each window. For every speech segment (Sgtart, Send> P)
overlapping [#, t1], we compute A = min(Sepg, t1) — max(Sstart, 20)-
If A > 0.5, we capture the total time participant p spoke to every
other member q as: Wg;onv) += A

For attention, we clip each user’s gaze intervals to the window
[to, t1] and, for each unordered pair (i, j), sum all overlapping gaze
durations § > 13 ms, so that repeated joint fixations accumulate
into a stronger undirected tie. We set: Wig.aﬂ) = Wj(l.aﬁ) =290

For proximity, we align headset poses at common timestamps
in [fo, t1] and treat each inter-sample interval At as a unit of time.
Whenever the pairwise distance d;; < 1.5 ft, we increment:
I/Vigl.)rox) _ M/j(iprOX) + At

Finally, we fuse these three modality-specific matrices into a
single multimodal fused adjacency matrix, where {a,, } are principal
component analysis (PCA)-derived weights summing to 1 so that
each channel contributes proportionally as:

W(fused) — Am W(m)

me {conv,att,prox }

All thresholds (0.5s for speech, 13 ms for gaze overlap, 1.5 ft for
proximity) are configurable, as are window length and stride. Each
execution yields an instantaneous sociogram ready for metric com-
putation or logging.

3.3 Temporal Clustering Module

Sociograms offer a static snapshot of group interactions over full
sessions or windowed aggregates, but they can not detect when
particular interaction patterns emerge or dissolve. Our Tempo-
ral Clustering Module addresses this by segmenting each ses-
sion’s dyadic behavioral features (such as balanced engagement,
leader-driven dialogue or disengagement) into temporal phases via
unsupervised clustering of time-series features.

3.3.1 Feature Selection and Construction. To focus on the most
informative signals (at the moment), we first standardize and filter
our initial pool of over 20 dyadic features of moment-to-moment
interaction between participants extracted on a 1s window, remov-
ing those with low variance, high pairwise correlation (r >0.95) or
minimal impact on clustering quality as determined by silhouette-
based importance ranking. This pruning yields a concise feature
representation spanning the following core behavior dimensions:

Verbal dynamics are captured via entropy_speaking, which quan-
tifies unpredictability in turn-taking, and dominance_ratio, the
imbalance in total speaking time per dyad.

Interaction diversity is measured with material_diversity, which
measures how many distinct object pairs jointly attend to, reflecting
the richness of shared focus.

Proximity is captured by features that characterize static close-
ness and dynamic movement patterns. dist_mean is average dyadic
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Table 1: Interpretation of network metrics by interaction mode. Conv = conversation, Att = shared attention, Prox = proximity.

l Modality ‘ Metric (Ref.)

‘ High Value Interpretation

‘ Low Value Interpretation

Centrality metrics identify potential leaders and information brokers in conversation and attention networks.

Conv, Att, Prox Eigenvector [14]

Connected to other highly central partici-
pants

Linked mainly to peripheral participants

Cohesion metrics quantify bonding and tightness in proximity and attention networks.

Att, Prox Avg. Clustering Coef. [66]

High values indicate that a node’s neighbors
are densely interconnected, reflecting tight
local subgroup cohesion

Low values indicate sparse neighbor con-
nections, reflecting weak local cohesion

Conv, Att, Prox Density [55]

High values signify a well-connected net-
work with active group engagement

Low values signify a fragmented or mini-
mally interacting group

Connectivity metrics assess the balance of two-way exchanges in the conversation network.

l Conv [ Reciprocity [23]

[ Balanced two-way exchanges (dialogue)

[ Predominantly one-way communication

|

distance, prox_binary measures co-presence within 1.5ft, and
approach_rate to capture speed of movement toward or away.
Shared attention (shared_att_cnt) counts the number of joint
gaze fixations on the same virtual object, indicating peaks of mutual
engagement.

All features are computed in 1s windows, z-normalized per dyad,
and aligned to a uniform temporal grid. This reduced feature set
captures both transient and sustained collaboration signals, pro-
viding high-resolution temporal segmentation while remaining
computationally minimal.

3.3.2 Sequence Encoding and Model Architecture. We treat each
dyad’s interaction over a segment as a T X F matrix, where T is
the number of 1s windows per segment and F = 7 is the number
of retained features. We determine both T and the stride S via
grid search, optimizing for cluster coherence on held-out data;
in practice, we use partial overlap (S < T) to balance temporal
resolution and embedding stability. Each sequence is processed
by a deep clustering architecture: a convolutional-recurrent auto-
encoder implemented in PyTorch. Two 1-D convolutional layers
(with kernel sizes and filter counts selected via grid search) followed
by ReLU activations and max-pooling extract local temporal motifs.
A bidirectional LSTM then ingests the pooled features, producing a
fixed-length latent vector. The decoder mirrors this architecture,
upsampling and LSTM layers reconstruct the original sequence.
Hyperparameters such as convolutional kernel dimensions, LSTM
hidden state size, and dropout rate are tuned to maximize silhouette
scores while maintaining low reconstruction error.

3.3.3 Clustering and Loss Function. The trained encoder maps each
segment to a latent embedding, which we cluster using K-Means.
To jointly optimize embeddings, both reconstruct their inputs ac-
curately and form tight, well-separated clusters, we minimize the
composite loss as: £ = (1-1) Lyec+4 Ly, Wwhere Lyec is the mean
squared reconstruction loss and L, is the squared Euclidean dis-
tance to the assigned cluster centroid. We sweep cluster weight
(A) in [0.3,0.7], choosing the value that yields the best trade-off
between silhouette score and reconstruction fidelity. When the
number of clusters k is unspecified, we apply a stability-informed
elbow criterion, combining within-cluster inertia with cross-run
adjusted Rand index (ARI) consistency to select k.

3.34 Window Length and Stride Selection. To trade off reconstruc-
tion accuracy against cluster coherence, we evaluate three < window :
stride > combinations (< 8s : 4s >, < 16s : 8s > and < 32s : 16s >).
Longer windows yielded slightly higher reconstruction error but
notably better silhouette scores, which plateaued beyond 32s. In-
creasing the stride to 16 s further improved cluster separation by
reducing overlap, with only a marginal impact on loss. We therefore
use a 32s window and 16s stride throughout, which also aligns our
temporal clusters with the sociogram snapshots and guarantees at
least 30s of data per network for stable metric estimation.

3.3.5 Implementation and Output. All heavy computation, such as
feature extraction, encoding, and clustering, is performed offline
after data collection. To scale across many dyads or lengthy sessions,
these tasks run in parallel, and a fast evaluation mode subsamples
up to 5000 windows, cutting runtime from ~ 30min to under 5min
with negligible quality loss. The module outputs a cluster label
for each dyadic window, which can be rendered as phase-aligned
timelines or heatmaps, offering a time-resolved map of how group
behavioral patterns evolve.

4 Deployment and Study Setup

4.1 Participants

We recruited 48 participants (12 groups of 4; 36 male, 8 female;
age mean (u) = 24.2, standard deviation (SD) = 4.7). Pre-study
demographic questionnaires measured prior immersive-tech ex-
perience on 7-point Likert scales: MR (¢ = 1.8,SD = 1.2), AR
(u =3.1,SD = 1.8), VR (¢ = 3.4,SD = 2.1). We fixed the group
size at four to maximize the number of dyadic interactions (six per
group) while keeping computation tractable [62].

4.2 Materials

We conducted the study in 10ft X 5f't space where participants
navigated and collaborated in close quarters (cleared of materials
to minimize distractions). Each participant used a Meta Quest Pro
headset [41], which captured and streamed eye gaze, binaural audio,
and 6DoF pose data over our local Wi-Fi network. We synchronized
all devices with NTP (< 50ms offset) and built the collaborative
MR app in Unity with the Meta XR SDK [40]. By aligning every
virtual object in each user’s coordinate frame, we guaranteed a
shared reference without any additional prompts, cues, or enforced
turn-taking.
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Figure 2: Windowed-session analysis to assess behavioral patterns obscured by session-level aggregation. Conversation reci-
procity for Groups 8, 10, 12 (left), Group 12’s multimodal density trajectory (center), and density variation (right).

4.3 Collaborative Task

We asked each group to sort 28 OASIS images [31] (prevalidated
for pleasantness and arousal and free of graphic content) into six
affective labels (angry, bored, relaxed, tense, pleased, frustrated)
based on Russell’s circumplex model [53]. The images lay scattered
throughout the virtual room, with floating plates labeled for each
emotion hovering nearby. Without any time limit or scripted turns,
participants freely approached and grabbed images, moved them
to their chosen plates, and negotiated assignments through open-
ended discussion. To sort an image, participants used a natural
point-and-drag motion with their Meta Quest Pro controllers. They
aimed at an image, held the grip button to pick it up, guided it
toward the desired emotion plate, and released the button to lock it
in place. Images only attach when positioned sufficiently close to a
label, providing immediate visual confirmation. Only one person
can manipulate a given image at a time, but different participants
may simultaneously move other images within reach, mirroring
the physical act of picking up and placing objects. This unstruc-
tured setting, where teams self-direct by clustering around images
of interest, encourages natural decision-making, communication,
and alignment as group members iteratively build consensus on
each label [5, 6, 51]. On average, groups completed the task in 32.4
minutes (SD = 8.4).

4.4 Procedure

Upon arrival, participants reviewed an IRB-approved information
sheet and provided verbal consent, then completed a brief demo-
graphics survey. We handed out Meta Quest Pro headsets, guided
each person through focus and fit calibration, and ran a short
tutorial using two practice images and categories to teach the
grab-drag-release interaction and category placement in MR. Next,
groups tackled the main task, sorting 28 images into 6 emotion
categories. We instructed them to work together to categorize these
images by emotion, discuss and reach agreement on each label, with
no time limit or performance feedback. Participants self-directed
their collaboration, moving freely around the space and negotiat-
ing assignments until everyone confirmed consensus. After they
finished sorting, the session concluded, and participants returned
their headsets. The entire session, including setup, training, task,
and wrap-up, took under 35 — 45 minutes.

4.5 Data Collection and Ground Truth

We captured synchronized multimodal data passively from each
headset and ran it through GIST’s end-to-end pipeline to infer
group behavior. To validate these automated inferences, we first
assessed clustering stability and checked that sociogram metrics
remained coherent across time and groups. We deliberately omitted
subjective collaboration surveys; such ratings cannot reliably cap-
ture the dynamic, moment-to-moment shifts our system targets and
would not align with its end-to-end, automated design. Therefore,
we manually validated our results against time-aligned passively
collected egocentric video from each headset, confirming the sys-
tem corresponded to actual behaviors on camera; this served as our
ground truth. This multi-layered validation demonstrates GIST ’s
robustness and scalability for passive, real-world MR group settings.

5 Results
5.1 Structural Analysis of Group Behavior

5.1.1 Windowed vs. Session-Level Sociograms. To see how temporal
granularity shapes our structural insights, we first asked whether
slicing full sessions into short, overlapping windows would uncover
interaction patterns that a single aggregated sociogram misses.
In Figure 2 we compared 32-minutes full-session sociograms against
sliding-window sociograms (32s windows, 16s stride; N = 12). On
the left, conversation reciprocity traces for Groups 8, 10, and 12
show Group 8 moves from one-sided turns (0) to balanced exchange
(~ 0.67), Group 10 oscillates widely from 0.11 to 0.85 (reciprocity
u = 0.45,SD = 0.27) revealing alternating episodes of symmetry
and dominance rather than a single persistent leader, and Group
12 gradually rebalances its dialogue. In contrast, a session-level
reciprocity of 0.97 (SD 0.10) barely hints at any variation.

In the center of Figure 2, we show Group 12’s PCA-fused mul-
timodal density over time and density over time for each modality.
We applied PCA to the z-scored edge-weight for each modality
across all 12 dyads. The first principal component captured 54% of
the total variance, drawing almost equally from proximity (loading
= 0.708) and attention (0.706) but hardly at all from conversation
(0.025). For example, in one pair the PCA-fused edge weight peaked
at 504 (in normalized units), while the original conversation tie
retained a directional weight of just 3.1 from B—A, demonstrating
that although PCA fusion summarizes overall interaction volume



GIST

o o o =
s > ® o

Reciprocity

o
N

11 21 31 41 5‘1 61 71
Window index

Group 12 Group 10 Group 8

-0.0

Figure 3: Windowed conversation reciprocity heat maps for
Groups 8, 10, and 12. Each row represents a 32s window;
darker shades denote higher reciprocity on a [0.00, 1.00] scale.
Dashed lines mark early/middle/late thirds.

effectively, it can wash out the very speech-based asymmetries
needed to detect leadership or dominance.

Next, to isolate each modality’s influence on the fused sociogram,
we performed leave-one-out ablation experiments. We compare
the coefficient of variation in density between full-session and
windowed analyses by calculating each condition’s coefficient of
variation across all groups and modalities as shown in Figure 2
(right). Removing conversation edges left overall density unchanged
but wholly inverted the ranking of the strongest ties (Spearman
p =—0.20, p < 0.05), indicating that directional speech cues drive
relational importance. Excluding proximity produced a moderate
reshuffling (p = 0.60, p < 0.01), while dropping shared attention
had almost no effect (p = 1.00, n.s.). These results confirm that GIST
PCA-based fusion effectively summarizes total interaction volume
but under-weights the critical speech-based asymmetries needed
to detect leadership and dominance. Accordingly, we recommend
fused graphs for lightweight, real-time coordination monitoring and
conversation-specific or fused graphs augmented with directional
features, for post-hoc role analysis.

5.1.2  Conversation Reciprocity Over Time. To track how speaking
turns balance or skew over the course of a session, we computed
bidirectional conversation reciprocity (the proportion of mutual ex-
changes out of all directed exchanges) within 32s windows stepped
every 16s (12 groups total). Heatmaps for Groups 8, 10, and 12
in Figure 3 show that despite near-maximal session-level density,
reciprocity patterns diverge markedly. An ANOVA across early, mid-
dle, and late thirds confirms this shift (F(2,33) = 8.45,p < 0.001).
Group 8’s reciprocity climbs from 0.00 to 0.67, showing a transi-
tion from one-sided monologues to balanced dialogue; Group 10
oscillates between 0.11 and 0.85 indicating alternating bouts of dom-
inance rather than a single persistent leader.; and Group 12 spans
the full 0 — 1 range but drifts upward, ending with a third-period
mean of 0.35 signaling partial rebalancing. These temporal trends
demonstrate GIST ’s capacity to pinpoint moments of leadership
emergence and shifts in dialogue equity.

5.2 Temporal Clustering of Dyadic Interactions

To capture how interaction dynamics evolve, we evaluate the be-
havioral patterns uncovered by our temporal clustering pipeline.

5.2.1 Latent Embedding and Cluster Selection. We divided each ses-
sion into 32s windows with an 16s stride, yielding 71404 dyadic seg-
ments. Each segment was encoded by a three-layer convolutional-
recurrent autoencoder (latent dimension = 16). We then applied
K-means (k = 2—10, 20 restarts) to the learned embeddings. An iner-
tia elbow, a silhouette score of 0.87, and an ARI > 0.8 all pointed to
k = 4 clusters. Figure 4 projects our 16-D embeddings into 2D using
UMAP, revealing four clearly separated clusters. Their relative sizes,
44.7%, 34.0%, 15.4%, and just 5.8% for clusters 0, 1, 2, 3, respectively,
show that high-energy co-manipulation is rare, whereas rhythmic
leadership and monotone focus dominate.

« Cluster 0

Cluster 1
« Cluster 2
« Cluster 3
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Figure 4: 3D UMAP of 71404 window embeddings. Colors
denote clusters; distinct manifolds confirm high silhouette
quality.

5.2.2  Cluster Characterization. Now we link each cluster to a dis-
tinct behavioral pattern by inspecting its z-scored feature profile
(Figure 5). Cluster 0 shows high dominance_ratio, low
speaking_entropy, and minimal proximity, indicative of structured,
turn-based leadership with predictable dialogue pacing. Cluster
1 combines elevated speaking_entropy, frequent shared_att_cnt
events, and close proximity to capture animated, synchronous co-
manipulation marked by rapid speech and movement fluctuations.
Cluster 2 features low material_diversity and muted speech dy-
namics, reflecting a narrow, repetitive task focus with balanced but
monotone interaction. Finally, Cluster 3 pairs high material_diversity
with low dominance_ratio, embodying instructor-style demonstra-
tions in which one participant explores varied content while others
observe.

5.2.3 Generalizability Across Dyads. We further validated our rule
hierarchy using Shapley additive explanations (SHAP) values, which
quantify each feature’s contribution to individual cluster predic-
tions. We distilled each behavioral motif into a clear decision hierar-
chy using a surrogate decision tree, with SHAP values confirming
the relative importance of each feature. In practice, any 32 s window
with speaking_entropy > 1.2 is labeled as Cluster 1 (animated col-
laboration); if not, a dominance_ratio < —0.7 assigns it to Cluster 3
(instructor-style behavior); failing that, material_diversity < —0.3
indicates Cluster 2 (monotone focus); all remaining segments fall
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Figure 5: Heatmap of clusters (rows) vs. features (columns),
where color intensity shows each feature’s deviation from
its mean.

Table 2: Entropy of cluster membership across groups, pairs,
and actors (lower values = more context-specific).

Cluster Group Pair Actor
Ent. Ent. Ent.

0 (Rhythmic Leader-Follower) 1.23 2.91 2.42

1 (Animated Collaboration) 2.47 3.41 2.85

2 (Monotone Focus) 2.10 2.68 2.21

3 (Instructor Demonstration)  2.60 3.73 2.88

into Cluster 0 (rthythmic leadership). This sequence prioritizes con-
versational unpredictability first, then leadership asymmetry, and
finally task variety.

To understand how these motifs distribute across teams and indi-
viduals, we computed the categorical entropy of cluster membership
at the group, pair, and actor levels in Table 2. A low entropy score
signifies a behavior that is tightly tied to specific contexts, while
a high score points to a widely shared interaction style. Cluster 0
shows the lowest group entropy (1.23), indicating that rhythmic
leader—follower patterns tend to be team-specific. By contrast, Clus-
ter 1’s high entropy across all three levels confirms that animated
collaboration is a universally occurring motif. Clusters 2 and 3 oc-
cupy intermediate positions, revealing a blend of context-sensitive
and broadly shared behaviors. These findings demonstrate that
our temporal clustering identifies distinct interaction phases and
captures their generalizability across diverse MR group settings.
Manual Validation: To assess our clustering labels against human
judgment, we randomly sampled 100 windows (evenly across the
four predicted clusters, and balanced by group) to match available
coding resources. Overall, manual labels agreed with our automated
assignments in 71 cases (71% accuracy). Performance was consistent
for Clusters 0-2. Precision ranged from 0.75 to 0.84, recall from 0.64
to 0.73, and F1 ~ 0.72. In contrast, Cluster 3 (expert demonstration)
achieved high recall (0.92) but lower precision (0.48), indicating
that the model often over—predicted this state. Most misclassifica-
tions involved false positives for Cluster 3 or confusions between
Clusters 0 and 2, whose feature profiles overlap partially. The macro-
averaged metrics precision 0.71, recall 0.74, and F1 = 0.70 confirm
broadly uniform performance across classes. These results suggest
that the pipeline reliably identifies the three dominant collaboration
modes, while further refinement is needed to reduce false positives
before using expert-demonstration labels for real-time adaptation.
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Figure 6: Fused eigenvector over time for one pair in Group 10,
with the transition from Cluster 3 to Cluster 1 highlighted.

5.3 Structural vs. Temporal Alignment

5.3.1 Alignment of Clusters and Network Metrics. To verify that
our temporal and structural analyses capture the same collabo-
rative phenomena from different angles, we cross-tabulated the
four behavioral clusters against tertile-binned network metrics
(low/medium/high) over 131 windows. After confirming chi-square
(¥?) assumptions, five metrics showed significant associations (Ta-
ble 3). Conversation reciprocity exhibited the strongest link (y? =
12.73, p = 0.0475,V = 0.49), with animated collaboration (Cluster
1) and expert demonstration (Cluster 3) over-represented in the
highest-reciprocity tertile. Eigenvector centrality also aligned mod-
erately with cluster membership across conversation (V' = 0.26),
fused (V = 0.24), proximity (V = 0.24), and attention (V = 0.23)
graphs (all p < 0.05), indicating that bursts of centrality in the so-
ciogram coincide with the high-energy and demonstration modes.
In contrast, simpler measures like density and clustering coeffi-
cient did not vary by cluster, suggesting that higher-order network
metrics are more sensitive to shifts in group behavior.

5.3.2  lllustrative Case Study: Lead—Lag Dynamics. In Figure 6 we
overlay Group 10’s fused eigen-vector trajectory with the cluster la-
bel for a single illustrative pair. For the first fifteen windows the pair
stays in Cluster 3, which we interpret as an explanatory or demon-
stration mode; during the same span the group-level centrality me-
anders at modest values, dipping to its session minimum (= 0.01)
and never rising above ~ 0.34. A decisive switch occurs at window
16, where the pair enters Cluster 1, the animated-collaboration state,
and the eigenvector score surges past 0.47. Centrality then plateaus
near the session maximum (= 0.49) for more than six minutes while
the dyad remains in Cluster 1. Brief returns to Cluster 3 later in the
session (e.g., windows 42 and 56) are accompanied by proportional
drops to the 0.43 — 0.45 range, illustrating how even momentary
shifts back to turn-taking discourse redistribute network influence.
The tight temporal coupling between the dyad’s cluster state and
the fused centrality confirms that GIST flags changes in interaction
style with window-level precision.

6 Discussion

Our evaluation demonstrates that GIST ’s dual-approach of com-
bining windowed sociograms with temporal clustering effectively
uncovers group behavior that static or unimodal approaches would
miss. By slicing sessions into overlapping 32s windows, we revealed
clear shifts in speaking equity, spatial cohesion, and attention align-
ment that full-session aggregation flattens. For instance, Group 8’s
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Table 3: Structural metrics whose low/medium/high tertile
distributions vary across clusters (N = 131 windows).

Metric (binned) X p Cramér’s V
Conversation reciprocity  12.73  0.0475 0.49
Conversation eigenvector 16.82 0.0100 0.26
Fused eigenvector 14.14 0.0281 0.24
Proximity eigenvector 14.92  0.0209 0.24
Attention eigenvector 14.13  0.0282 0.23

transition from monologue to balanced dialogue, Group 10’s alter-
nating bouts of dominance, and Group 12’s gradual rebalancing
were all invisible in single, session-wide sociograms but became evi-
dent through sliding-window reciprocity (Figure 2) and multimodal
density trajectories (Figure 3).

Our leave-one-out ablations showed that while PCA-fused so-
ciograms summarize overall interaction volume, they risk wash-
ing out speech-based asymmetries crucial for detecting leadership;
omitting conversation ties entirely inverted tie rankings (Spear-
man p = —0.20), whereas removing proximity or attention had far
smaller effects. This finding suggests a two-track monitoring strat-
egy: fused graphs for lightweight, real-time coordination signals,
and directed conversation graphs (or fusion augmented with speech
asymmetry) for post-hoc analyses of influence and dominance.

The temporal clustering module further characterizes collabo-
ration at the process level, distilling 71404 dyadic windows into four
interpretable motifs (thythmic leadership, animated co-manipulation,
monotone focus, and expert demonstration) that together cover the
breadth of interaction styles. A compact decision hierarchy based
on speaking entropy, dominance ratio, and material diversity recov-
ers these motifs with 71% accuracy against manual coding. Entropy
analyses reveal that while some behaviors (animated collaboration)
generalize widely across teams, others (rthythmic leader—follower)
remain group-specific, highlighting where adaptive support should
be tailored versus where generic cues suffice.

By aligning cluster labels with tertiled network metrics, we con-
firmed that high-reciprocity and elevated eigenvector-centrality
states co-occur with animated and demonstration phases (Table 3),
whereas simple density and clustering coefficients remain blind to
these shifts. A case study of Group 10’s fused eigenvector trace
shows centrality spikes reliably precede bursts of high-energy col-
laboration (Figure 6), illustrating how structural flags can anticipate
emergent interaction modes.

6.1 Implications & Practical Recommendations

By uniting structural sociograms with temporal clustering, GIST
delivers actionable group analytics in MR, transforming raw sensor
streams into insights that can drive adaptive collaboration sup-
port. First, our session-level sociograms reliably detect shifts in
group roles. Conversation reciprocity (V = 0.49) and eigenvector
centrality (V ~ 0.24 across modalities) track changes in influence
distribution spikes in these metrics, flagging impending leadership
hand-offs. In contrast, simpler measures like density and clustering
remain constant, underscoring the importance of directional and
centrality features for real-time role monitoring.

Second, the four 32-second behavioral micro-states uncovered
by our clustering pipeline are both compact and interpretable
(silhouette = 0.87, ARI > 0.80). A shallow decision tree using
speaking_entropy, dominance_ratio, and material_diversity repro-
duces 91% of cluster assignments. These clear, human-readable cues
directly map onto MR design knobs, such as prompting floor control
when dominance spikes or suggesting task variety when monotony
sets in, without human intervention.

Third, the complementary strengths of each scale enable proac-
tive, rather than reactive, interventions. Structural metrics consis-
tently rise about 32 s before a cluster transition (fused centrality
climbs just before animated collaboration begins), offering an early
warning system. A three-step workflow: (1) flag potential change
via sociogram metrics, (2) confirm the new state through clustering,
and (3) trigger an adaptive response (open a shared annotation
panel), can support seamless, context-aware MR experiences.

Finally, our joint analysis yields four design-relevant insights:
leadership behavior oscillates on the order of sub-minutes; balanced
turn-taking predicts engaging collaboration; monotony can be de-
tected in real time through low task diversity and speaking entropy;
and while some interaction modes (like animated co-manipulation)
generalize across teams, others (such as rhythmic leader—follower)
are team-specific.

Design implications. In practice, fused sociograms from GIST
offer a lightweight, live view of overall coordination intensity, ideal
for immediate adaptation, whereas conversation-specific graphs
and temporal cluster labels support richer post-hoc reflection, per-
sonalized feedback, and leadership coaching. This dual-purpose
approach lets developers tailor MR collaboration tools to their appli-
cation’s latency, interpretability, and analytic depth requirements.

6.2 Limitations and Future Work

Our evaluation of GIST focused on 4-person image sorting in a
controlled lab environment. Different tasks, larger groups, or more
dynamic spatial settings may introduce new interaction modes
(side conversations, head-gestures) or sensor challenges (occlusion).
Moreover, while our temporal clustering reliably distinguishes three
dominant motifs, it over-assigns the infrequent state (expert demon-
stration); boosting its precision through class-weighted training,
data augmentation of under-represented patterns, incorporating
gesture recognition, or the addition of task-specific features (tool-
use gestures) and leveraging additional semantic cues will be es-
sential before live deployment.

All analyses currently run offline; real-time clustering and met-
ric computation would require further optimization and efficient
buffering of sensor streams. Our PCA-based fusion effectively sum-
marizes overall interaction volume but under-weights directional
speech asymmetries; exploring alternative fusion techniques (multi-
view graph learning) could better preserve both volume and direc-
tionality. Integrating lightweight speech-to-intent analysis (while
respecting privacy) could help disambiguate instructional mono-
logues from narrative commentary.

We deliberately omitted subjective collaboration surveys, as
moment-to-moment behavioral shifts are poorly captured by end-
of-session ratings. Future work should include user studies that
integrate GIST with adaptive MR features (dynamic floor-control



prompts) to measure their impact on team coordination, decision-
making, and subjective experience in real-world remote and co-
located settings. Finally, controlled A/B experiments comparing
static versus adaptive MR conditions will be critical to demonstrate
the GIST sensing platform’s technical robustness and its human-
centered benefits in authentic, open-ended collaboration scenarios.

7 Conclusion

We presented GIST, the first end-to-end platform for passive, in
situ sensing of group behavior in MR. By combining lightweight,
headset-only multimodal sensing with graph-based structural anal-
ysis and deep temporal clustering, our system uncovers both who
drives collaboration and how interaction patterns evolve moment-
to-moment. Through a 48-participant (12-group) user study, we
demonstrated its ability to reveal leadership rhythms, dialogue bal-
ance, and distinct collaboration modes that static or offline methods
miss. GIST bridges the gap between raw MR sensor logs and action-
able social metrics, laying the groundwork for adaptive, socially
aware MR applications that can support teamwork in real time.
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